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Pilot plant for production of ethanol from lignocellulosic waste, Kashipur, India.  
Designed by ICT Mumbai Centre for Energy Biosciences. Photo: courtesy of Prof A 
Lali
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Microbial Routes to Biodiesel

● Cyanobacteria naturally produce alkanes and 
long-chain fatty alcohols by photosynthesis.

● Some algae and yeasts produce high levels of 
triglycerides as storage compounds, which could 
be trans-esterified to fatty methyl esters.

● Engineering of bacteria or yeasts with the 
cyanobacterial pathway to generate alkanes non-
photosynthetically from C-containing substrates
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Approach in this Study

● Used E coli as the host organism because of:
● Detailed knowledge of its metabolic network
● Extensive molecular genetics tools that facilitate 

experimental modification of metabolism
● Grows readily
● Native ability to use pentoses ( such as xylose 

from lignocellulose wastes) in addition to glucose
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Heterologous Alkane Synthesis 
Pathway

● The pathway branches off from fatty acid synthesis by 
intercepting acyl-ACP intermediates.

● AAR,  acyl-ACP reductase,  EC 1.2.1.80  from 
Synechococcus elongatus releases a long-chain aldehyde, e.g.:

palmitoyl-ACP + NADPH + H+ -> palmitaldehyde + NADP+ + ACP

● ADO. aldehyde oxygenase deformylating, EC 4.1.99.5 
from Nostoc punctiforme  :
 long-chain aldehyde + O2 + 2NADPH + 2H+ -> alkane + formate + H2O + 

2NADP+   
The reaction requires ferredoxin and ferredoxin reductase
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Alternative to Long-Chain Alcohols

● AAR,  acyl-ACP reductase,  EC 1.2.1.80  from 
Synechococcus elongatus releases a long-chain 
aldehyde, e.g.:

palmitoyl-ACP + NADPH + H+ -> palmitaldehyde + NADP+ + 
ACP

● YbbO, NADP+-dependent aldehyde reductase, 
EC 1.1.1.2 from E. coli, overexpressed:
long-chain aldehyde + NADPH + H+ -> long-chain alcohol + 
NADP+   
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Optimisation at ICGEB

● Different options of enzyme sources (after codon 
optimisation) and promoters were explored via 
expression in medium-copy number plasmids.

● A fusion protein of AAR and ADO was tested but not 
found better than enhanced expression of separate 
genes with  T5 promoters.

● For fatty alcohols, expression of AAR and YbbO from 
T5 promoters was found better than expression of 
AAR alone and reliance on native actvity of E coli 
alcohol dehydrogenases. 
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Outcome for Alkanes
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Outcome for Strain Selection
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Modelling for Improved Productivity
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Metabolic Modelling Methods

Structural modelling techniques
● - need an accurate reaction list from which to 

generate a stoichiometry matrix; assume 
metabolic steady state.

● - show existence (and number) of feasible 
metabolic routes; optimal conversion 
stoichiometries; network flux values.
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Metabolic Modelling Methods

Kinetic modelling techniques
● - need a reaction list and full kinetic 

description of each enzyme/step.
● - predict time-courses, steady-state values of 

reaction fluxes and metabolite 
concentrations.

● - allows sensitivity analysis (Metabolic 
Control Analysis) to compute dependence of 
fluxes and concentrations on enzyme 
activities.
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Structural Modelling Methods

Elementary modes analysis
● - all feasible routes (modes) through a network from 

nutrients to metabolic products;

● - network flux values and product yields;

● - good for designing knock-out strategies to eliminate 
metabolism to unwanted products;

● - computationally limited to small to medium sized 
metabolic networks.

(Schuster, Dandekar & Fell, 1999, 2000)
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Structural Modelling Techniques
Linear programming (LP or Flux Balance Analysis)

●- incorporates known metabolic properties, such as 
nutrient uptake rates, as constraints;

●- computationally feasible even on the largest (genome-
scale) metabolic models;

●- can be used to design over-expression strategies for 
increasing productivity;

●- determines the optimal network route to achieve a 
specified metabolic objective;

●- several techniques for design of knock-out strategies, 
though very large models produce less clear results;

●Basic method only produces a single solution; finding 
multiple optima or near-optimal solutions is more complex.

(Fell & Small, 1985; Varma & Palsson, 1993)
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Our Modelling Approach

Though an elementary modes analysis would potentially 
have been feasible:

● As alkanes are not catabolic products, merely cutting 
our routes to other products would not necessarily 
induce alkane synthesis, and

● We expected to have to over-express parts of central 
carbon metabolism to supply enough substrate to 
allow significantly increased flux through the fatty acid 
synthesis pathway.

We therefore opted for a linear programming approach.
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The Model
● The model was based on a central carbon metabolism 

(CCM) model developed by Trinh, Unrean & Srienc 
(2008).

● It was reconstructed using ScrumPy from the EcoCyc 
database, plus the additional heterologous reactions to 
alkane.

● A single, representative alkane – pentadecane – was 
modelled as output; the carbon source was glucose in 
aerobic conditions.

● Growth of the cell was modelled by withdrawal of a 
small set of CCM intermediates at appropriate rates 
established from larger-scale E coli models.

● The model has 74 reactions and 61 metabolites.
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Initial Model Analysis

1.The model was checked for stoichiometric and 
energetic consistency.

2.LP was used (with ScrumPy) to check the ability to 
supply biomass precursors from glucose at a rate 
equivalent to a growth rate of 1 g dcw.h-1 ( as a 
constraint), with minimisation of total flux in the 
network as the optimisation criterion.

3.The rate of glucose uptake was then set as a 
constraint at twice its value in the previous solution 
to model the fate of excess carbon intake. Only 
acetate and lactate were formed in addition; no 
pentadecane.
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Constraint Scanning

● The model can be solved for simultaneous 
production of biomass and pentadecane by 
imposing these as constraints.

● However, if we use ScrumPy to compute a 
series of LP solutions for fixed biomass but 
pentadecane from 0 to 2 mmol.(gDW.h)-1, we 
can see how fluxes through the network have to 
change to support alkane synthesis.
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Constraint Scanning Alkane 
Production
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Reaction Correlations
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Another View ...
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… continued
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G6PDH Over-Expression

● On the basis that large relative increases in flux with 
pentadecane production could indicate steps that might 
become limiting, glucose-6-phosphate dehydrogenase 
(G6PDH) was selected as a target for over-expression.

● This was represented in the model by setting its flux to 
twice the value needed for biomass formation.  Solving 
the model with this as a constraint only resulted in extra 
flux being diverted into the Entner-Duodoroff pathway, 
and then from pyruvate to PEP via PEP synthase with 
no change in other outputs apart from CO2.
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Knock-out Selection

● As the increased C-flux was not reaching alkane, we 
modelled a knockout of the ED pathway by 
constraining the flux of the reaction catalysed by the 
edd gene product to zero, resulting in small amounts 
of formate and alkane.

● This was followed by deleting the PEP synthase 
reaction (pps), which resulted in larger amounts of 
formate, alkane and lactate.

● As additional products appeared, we modelled 
additional knock-outs in the branches leading to them 
until the only products were biomass, CO2 and 
alkane.
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Knock-outs for Alkane production
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Experimental Implementation
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G6PDH Over-expression
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Alkane Yields
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Fatty Alcohol Production
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Final Improvement

● In the final strain so far, the carbon yield from 
glucose was still less than the theoretical 
maximum attainable with simultaneous biomass 
synthesis.

● Analysis of the flux values in the model solutions 
showed that the main competitive flux for alkane 
was now the phospholipid synthesis for biomass.

● This was therefore attenuated by a non-lethal 
knockout of a phospholipid pathway gene for the 
final producing strain.
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Increase in Yield by Growth 
Attenuation
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Overall Result

● The initial strain optimisation by ICGEB improved 
alkane production from an initial 2.8 mg/L to 102 
mg/L.

● The further model-designed improvements led to a 
further increase to 425 mg/L.

● The productivity of fatty alcohols was increased 
even further to 1500 mg/L.

● These strains, when tested in fed-batch bioreactors 
produced 2.54 g/L alkane and 12.5 g/L fatty alcohol 
– the highest alkane yields yet reported for E coli.



June 2018 Optimising Alkane Production 37

Conclusions
● Theory-led design can narrow the search space 

for metabolic engineering.

● There is still a long way to go to achieve 
commercial alkane production by 
microorganisms from sustainable C-sources.

● Fatma, Z. et al  Model-assisted metabolic 
engineering of Escherichia coli for long chain 
alkane and alcohol production, Metabolic 
Engineering, 45, 134-141 (2018).



  

Growth curves
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Fig 1
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