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Microbial Routes to Biodiesel

» Cyanobacteria naturally produce alkanes and
long-chain fatty alcohols by photosynthesis.

 Some algae and yeasts produce high levels of
triglycerides as storage compounds, which could
be trans-esterified to fatty methyl esters.

* Engineering of bacteria or yeasts with the
cyanobacterial pathway to generate alkanes non-
photosynthetically from C-containing substrates
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Approach in this Study

» Used E coli as the host organism because of:
» Detailed knowledge of its metabolic network

» Extensive molecular genetics tools that facilitate
experimental modification of metabolism

* Grows readily

» Native ability to use pentoses ( such as xylose
from lignocellulose wastes) in addition to glucose
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Heterologous Alkane Synthesis
Pathway

 The pathway branches off from fatty acid synthesis by
Intercepting acyl-ACP intermediates.

 AAR, acyl-ACP reductase, EC 1.2.1.80 from
Synechococcus elongatus releases a long-chain aldehyde, e.q.:
palmitoyl-ACP + NADPH + H+ -> palmitaldehyde + NADP+ + ACP

 ADO. aldehyde oxygenase deformylating, EC 4.1.99.5

from Nostoc punctiforme
long-chain aldehyde + O, + 2NADPH + 2H+ -> alkane + formate + H,O +

2NADP+
The reaction requires ferredoxin and ferredoxin reductase
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Alternative to Long-Chain Alcohols

» AAR, acyl-ACP reductase, EC 1.2.1.80 from
Synechococcus elongatus releases a long-chain
aldehyde, e.g.:

palmitoyl-ACP + NADPH + H+ -> palmitaldehyde + NADP+ +
ACP

* YbbO, NADP+dependent aldehyde reductase,

EC 1.1.1.2 from E. coli, overexpressed:

long-chain aldehyde + NADPH + H+ -> long-chain alcohol +
NADP-
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Optimisation at ICGEB

 Different options of enzyme sources (after codon
optimisation) and promoters were explored via
expression in medium-copy number plasmids.

A fusion protein of AAR and ADO was tested but not
found better than enhanced expression of separate
genes with T5 promoters.

» For fatty alcohols, expression of AAR and YbbO from
T5 promoters was found better than expression of
AAR alone and reliance on native actvity of E coli

alcohol dehydrogenases.
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Outcome for Strain Selection
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Modelling for Improved Productivity
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Metabolic Modelling Methods

Structural modelling techniques

* - need an accurate reaction list from which to
generate a stoichiometry matrix; assume
metabolic steady state.

* - show existence (and number) of feasible
metabolic routes; optimal conversion
stoichiometries; network flux values.
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Metabolic Modelling Methods

Kinetic modelling techniques

» - need a reaction list and full kinetic
description of each enzyme/step.

- predict time-courses, steady-state values of
reaction fluxes and metabolite
concentrations.

o - allows sensitivity analysis (Metabolic
Control Analysis) to compute dependence of
fluxes and concentrations on enzyme
activities.
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Structural Modelling Methods

Elementary modes analysis

- all feasible routes (modes) through a network from
nutrients to metabolic products;

» - network flux values and product yields;

e - good for designing knock-out strategies to eliminate
metabolism to unwanted products;

e - computationally limited to small to medium sized
metabolic networks.

(Schuster, Dandekar & Fell, 1999, 2000)
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Structural Modelling Technigues

Linear programming (LP or Flux Balance Analysis)

*- Incorporates known metabolic properties, such as
nutrient uptake rates, as constraints;

- computationally feasible even on the largest (genome-
scale) metabolic models;

- can be used to design over-expression strategies for
Increasing productivity;

+- determines the optimal network route to achieve a
specified metabolic objective,

»- several technigues for design of knock-out strategies,
though very large models produce less clear results;

*Basic method only produces a single solution; finding

multiple optima or near-optimal solutions is more complex.
(Fell & Small, 1985; Varma & Palsson, 1993)
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Our Modelling Approach

Though an elementary modes analysis would potentially
have been feasible:

» As alkanes are not catabolic products, merely cutting
our routes to other products would not necessarily
Induce alkane synthesis, and

* \We expected to have to over-express parts of central
carbon metabolism to supply enough substrate to
allow significantly increased flux through the fatty acid
synthesis pathway.

We therefore opted for a linear programming approach.
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The Model

e The model was based on a central carbon metabolism
(CCM) model developed by Trinh, Unrean & Srienc
(2008).

* |t was reconstructed using ScrumPy from the EcoCyc
database, plus the additional heterologous reactions to
alkane.

* Asingle, representative alkane — pentadecane — was
modelled as output; the carbon source was glucose In
aerobic conditions.

 Growth of the cell was modelled by withdrawal of a
small set of CCM intermediates at appropriate rates
established from larger-scale E coli models.

e The model has 74 reactions and 61 metabolites.
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Initial Model Analysis

1.The model was checked for stoichiometric and
energetic consistency.

2.LP was used (with ScrumPy) to check the ability to
supply biomass precursors from glucose at a rate
equivalent to a growth rate of 1 g dcw.h-1(as a
constraint), with minimisation of total flux in the
network as the optimisation criterion.

3.The rate of glucose uptake was then set as a
constraint at twice its value in the previous solution
to model the fate of excess carbon intake. Only
acetate and lactate were formed In addition; no

pentadecane.
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Constraint Scanning

 The model can be solved for simultaneous
production of biomass and pentadecane by
Imposing these as constraints.

 However, If we use ScrumPy to compute a
series of LP solutions for fixed biomass but
pentadecane from O to 2 mmol.(gDW.h)-1, we
can see how fluxes through the network have to
change to support alkane synthesis.
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Constraint Scanning Alkane
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Reaction Correlations
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Another View ...
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G6PDH Over-Expression

* On the basis that large relative increases in flux with
pentadecane production could indicate steps that might
become limiting, glucose-6-phosphate dehydrogenase
(G6PDH) was selected as a target for over-expression.

* This was represented in the model by setting its flux to
twice the value needed for biomass formation. Solving
the model with this as a constraint only resulted in extra
flux being diverted into the Entner-Duodoroff pathway,
and then from pyruvate to PEP via PEP synthase with
no change in other outputs apart from CO.,.
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Knock-out Selection

* As the increased C-flux was not reaching alkane, we
modelled a knockout of the ED pathway by
constraining the flux of the reaction catalysed by the
edd gene product to zero, resulting in small amounts
of formate and alkane.

* This was followed by deleting the PEP synthase
reaction (Apps), which resulted in larger amounts of
formate, alkane and lactate.

» As additional products appeared, we modelled

additional knock-outs in the branches leading to them

until the only products were biomass, CO, and

alkane.
June 2018 Optimising Alkane Production
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Knock-outs for Alkane production
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Experimental Implementation
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Alkane Yields
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Final Improvement

* |In the final strain so far, the carbon yield from
glucose was still less than the theoretical
maximum attainable with simultaneous biomass

synthesis.

» Analysis of the flux values in the model solutions
showed that the main competitive flux for alkane
was now the phospholipid synthesis for biomass.

* This was therefore attenuated by a non-lethal
knockout of a phospholipid pathway gene for the
final producing strain.
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Increase In Yield by Growth
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Overall Result

* The Initial strain optimisation by ICGEB improved
alkane production from an initial 2.8 mg/L to 102
mg/L.

* The further model-designed improvements led to a
further increase to 425 mqg/L.

* The productivity of fatty alcohols was increased
even further to 1500 mg/L.

* These strains, when tested Iin fed-batch bioreactors
produced 2.54 g/L alkane and 12.5 g/L fatty alcohol
— the highest alkane yields yet reported for E coll.

June 2018 Optimising Alkane Production 36



Conclusions

* Theory-led design can narrow the search space
for metabolic engineering.

* There is still a long way to go to achieve
commercial alkane production by
microorganisms from sustainable C-sources.

 Fatma, Z. et al Model-assisted metabolic
engineering of Escherichia coli for long chain
alkane and alcohol production, Metabolic
Engineering, 45, 134-141 (2018).
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