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Genome scale model of 
Cupriavidus necator
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 Grows on organic substrates or H2 and CO2 
under aerobic conditions

 Grows to high-cell densities under 
lithoautotrophic or heterotrophic conditions

 Produces large amounts of a biodegradable 
polymer polyhydroxybutyrate (PHB)

STEM picture of Cupriavidus 
necator harbouring PHB granules

Flagellation of strain N-1. 
Bar, 1.0 µm

C. necator H16 an ideal chassis for biotechnology
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C. necator lithoautotrophic metabolism

 Carbon dioxide is fixed via the Calvin 
cycle

 Membrane bound hydrogenase directly 
connected to the electron transport chain 
(ETC) for generating ATP

 Soluble hydrogenase that is coupled to 
NADH synthesis that is required for the 
Calvin cycle or ETC

 Oxygen final electron acceptor (under 
anaerobic conditions nitrate is used)
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Genome scale model of C. necator
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 Constructed genome scale model of C. necator using 
Cell Systems Modelling Group pipeline
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Genome scale model of C. necator
 Constructed genome scale model of C. necator using Cell 

Systems Modelling Group pipeline
• 912 BioCyc reactions (AutoReutro.spy)
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Genome scale model of C. necator
 Constructed genome scale model of C. necator using Cell 

Systems Modelling Group pipeline
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Genome scale model of C. necator
 Constructed genome scale model of C. necator using Cell 

Systems Modelling Group pipeline
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H16_A1258 H16_A1259 H16_B0965

AND

D-Galactarate dehydratase

Galactarate dehydratase rxn : (H16_A1258 AND H16_A1259) OR H16_B0965

 Further network curation
 Carry out gene knockout analysis
 Integrate gene expression data

Gene-reaction associations
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Genome scale model validation

Substrate 
(mmol gDCW h)

Growth rate (1/h)

Fructose (2.1 ± 0.3) 0.17 ± 0.03 

0.17
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Steady state constraint

Fixed ammonium uptake

Objective: min. sum of 
fluxes

Fixed biomass

Fructose uptake, varied 
between 1 and 3

Genome scale model validation – ammonia limitation
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Genome scale model validation – ammonia limitation
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Integrated gene expression data using iMAT approach to reduce the 
solution space

Genome scale model validation – ammonia limitation

Divide genes into 3 levels: 
highly, moderately and lowly 

expressed (1, 0, -1)

Integrate using iMAT algorithm 
– mixed integer linear program 
that maximises consistency to 

the gene expression level 

Generation of condition-specific 
model with reduced number of 

reactions
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G H
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G1 = 1
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G5 = 1

G6 = 1
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Genome scale model validation – ammonia limitation
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Flux through R1

Flux sampling analysis scans the solution space to provide distribution of flux values per 
reaction. Compare flux distributions across two different conditions to find those that are 
differentially altered

The samples must be a ‘good’ representation of the solution space. 

Genome scale model validation – ammonia limitation
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• The results show the mean flux value for 
the growth phase predicted fluxes and the 
nitrogen-limited phase predicted fluxes

• PHB production and degradation is active

• Calvin-Benson cycle is active in ammonia 
limited conditions

• TCA cycle flux decreases in ammonia 
limited conditions

Genome scale model validation – ammonia limitation
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Redirecting flux towards 
platform chemicals
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Ethylene production 

Widely used in the chemical industry, worldwide production 
exceeds 150 million tons

Currently produced from steam cracking, which releases vast 
quantities of CO2 

Already produced in microorganisms that contain the ethylene 
forming enzyme (EFE) but with low yields 

3 AKG + Arg  + 3 O2 2 Ethylene + Succinate + P5C + Guanidine + 7 CO2 

EFE stoichiometry:



18Genome scale model of C. necatorN. Pearcy

Maximum theoretical yields of ethylene

Set objective function 
to maximise flux to 
ethylene transporter
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Maximum theoretical yields of ethylene

Steady state 
constraint
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Maximum theoretical yields of ethylene

Constrain the 
fructose uptake 
rate to be less or 
equal to 2 mmol 
gDCW-1h-1
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Maximum theoretical yields of ethylene

Constrain 
biomass to 
0.05 h-1 or 
higher.
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All rates in:
mmol gDCW-1 h-1
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Redirecting flux towards ethylene via growth 
coupling
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Redirecting flux towards ethylene via growth 
coupling

Simulated double reaction knockouts in the model with maximisation 
of biomass as objective function
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Redirecting flux towards ethylene via growth 
coupling

• Identified solution that blocks 
proline biosynthesis by KO of 2 
reactions

• EFE becomes essential for 
restoring proline biosynthesis
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Conclusions 

●GSM predicts growth rates with high accuracy during growth 
phase

●Predicting ammonia limited conditions however has more 
variability in the model. Integrating OMICs data can reduce the 
variability and correctly produced PHB as sole product

●GSM is useful for predicting capabilities for producing non-native 
products and to assess and predict new engineering strategies

●Optimisation approaches can be used such as optGene, optKnock, 
optStrain to predict growth coupling strategies
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