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Abstract

Recent advances in genome sequencing technology have enabled the eluci-

dation of complete genome sequence for plants and algae. Genome scale

metabolic models constructed from genome annotations represent the en-

tire metabolic characteristics of the organism and can be used to integrate

other data and study metabolic capabilities of the organisms under different

conditions. This framework can help develop new insight about operating

characteristic of the organism and propose new hypotheses that can be tested

experimentally.

In order to advance our understanding of photosynthetic metabolism in

plants and algae, GSMs of A. thaliana and C. reinhardtii have been con-

structed using annotations from their respective BioCyc databases. They

satisfy all theoretical considerations and are able to represent known biolog-

ical behaviors and thus can be used in subsequent investigations.

In collaboration with experimental partners, the arabidopsis model was used

to study the knock-out phenotype of the Calvin Cycle enzymes. This cor-

rectly predicted the viability of single knockouts of 4 Calvin cycle enzymes.

Alternate metabolic routes that make such change possible were identified

using flux balance analysis. The analysis demonstrated a complementary

role of SBPase and FBPase in the Calvin cycle and further proposed a novel

role of transaldolase in daytime metabolism under knockout conditions.

Both models, were used to investigate likely coordinated changes in metabolic

networks to dissipate excess energy under high light conditions. Methods

that use correlation coefficient and mixed integer linear programming have

been developed for this purpose. Proteomics data obtained under high light

conditions was integrated in the model to propose energy dissipating modes

that are more likely to occur in vivo. Further, removal of reactions involved

in energy dissipation mechanisms showed improve biomass yield.
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Chapter 1

Introduction to Plant

Metabolism

1.1 Project Background

The research carried out in this thesis is part of the AccliPhot consortium (http:

//www.accliphot.eu/), the Marie Curie Initial Training Network funded by the

European Commission (grant agreement number PITN-GA-2012-316427). The

multidisciplinary consortium is composed of eleven theoretical, experimental and

industrial partners across Europe. The main research aim of AccliPhot is to in-

vestigate and understand short-term acclimation mechanisms to changes in light

conditions in the photosynthetic organisms Arabidopsis thaliana a multicellular

flowering plant, Chlamydomonas reinhardtii a unicellular algae and Phaeodacty-

lum tricornutum, a unicellular diatom. Using the resources and expertise available

in the consortium, experimental and theoretical methods have been combined to

investigate metabolism and whole-organism behavior, in particular growth and

biomass yield. The aim is to employ the findings to optimise and upscale biotech-

nological exploitation of photosynthetic microalgae for the production of biofuels

and high-value commodities.

The contribution of this project to the overall aim of AccliPhot is the recon-

struction of genome scale metabolic models (GSMs) of A. thaliana and C. rein-

hardtii and their analysis to develop a systematic understanding of photosynthetic

1
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metabolism of these organisms. The models have been used to study potential

responses to changing light conditions and, especially under high light, to identify

potential new metabolic routes used for the dissipation of energy. Moreover, the

models have been used to integrate various experimental data generated by the

experimental partners in the consortium and the predictions made by the model

have been a good starting point to design new experiments with more certainty of

what to expect. Overall the aim is to use the models to gain new insight into the

metabolic characteristics of these organisms and ultimately help to improve the

photosynthetic productivity of useful biochemicals.

1.2 Motivation

Life on Earth is mainly powered by energy from the sun, captured by plants, algae

and bacteria, through the process of photosynthesis, which uses sunlight, water

and CO2 from the environment to produce sugar and other organic compounds,

and ultimately provides food for many living organisms, supporting their life on

Earth. Also, it has been reported that one quarter of all synthetic medicines comes

directly from plants and plant derivatives and more then 60% of cancer therapeu-

tics available in the market or under test are natural product based (Brower, 2008).

With the growing population of the world, the demand for food and medicines

rises every year. The Food and Agriculture Organization of the United Nations

estimates that the world crop production increased by 160% over last 65 years.

They predict that in order to ensure food security and improve nutrition to a grow-

ing population, around 1.4% more grain needs to be made each year, representing

30% more by 2030 and around 70% more by 2050 [http://www.fao.org/faostat/].

If agricultural production is to be increased at that rate, it will require the doubling

of productivity per hectare, because of the limited arable land (Edgerton, 2009).

Thus in order to improve crop yield and efficiently use arable land for a sustainable

future it is vitally important that we throughly understand photosynthesis.

An in-depth knowledge of photosynthetic biochemistry will help to develop metabolic

engineering strategies to improve crop productivity and nutrient-use efficiency

(Sweetlove et al., 2016). Recent advances in plant science research have made

it possible to use molecular genetic technology to manipulate biochemical path-

2



ways to achieve desired functions (Andrews and Whitney, 2003; Raines, 2006).

Improving the photosynthetic rate correlates with biomass formation and thus has

a positive influence on crop productivity (Kruger and Volin, 2006).

Over the last decade, various scientific organizations have been investing heavily to

discover plants with improved characteristics. Various collaborative research and

bio-engineering projects are being undertaken to help achieve this goal (Ort et al.,

2015). The ready availability of data pertaining to plant genotype has stimulated a

number of modelling efforts with the aim of investigating the feasibility of increas-

ing productivity for industrial and pharmaceutical process. In this regard, systems

biology and in particular the use of metabolic and regulatory network models, is

a promising tool to broaden our knowledge and further explore the potential of

biotechnological use of plants.

Systems biology is an interdisciplinary field of study that is focused on study-

ing interaction between and within biological systems using mathematical and

computational approaches. It is based on the assumption that properties of a sys-

tem cannot be understood by focusing on one aspect of their highly interacting

components (Joyard and McCormick, 2010). Thus the interface between math-

ematics, statistics, computer science and biology is used to understand the syn-

ergy between molecular constituents (DNA, RNA, proteins, enzymes, metabolites

and ions). One of the aims of system biology is to use computational tools and

mathematical models to extract useful information from readily available high-

throughput datasets. The information can be used to develop new understanding

of structure and dynamics of biological networks (Joyard and McCormick, 2010).

The ultimate goal of plant systems biology in particular is to develop computa-

tional models capable of representing the entire biological organisation of plants

(Gutiérrez et al., 2005). Such models can be used to further develop our under-

standing of molecular, cellular and physiological properties of plant species.

A. thaliana is an extensively studied organism and was the first plant to have

its full genome sequenced (Arabidopsis Genome Initiative, 2000). This provided

the foundation to collectively study the structure and dynamics of plant genomes

and systematically identify the genes responsible for growth, development and

environmental responses (Bevan and Walsh, 2005). A successful application of
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predictive modelling in this model plant can bring forward a system-biological

interpretation of plant biochemistry and the knowledge can guide metabolic engi-

neering strategies to employ plants as biotechnological factories. With the advent

of high throughput data, the trend of constructing large-scale models of different

plant species is getting popular with remarkable success in discovering newer in-

sight (Poolman et al., 2009; Cheung et al., 2013; Lakshmanan et al., 2016)

Within the scope of this thesis, we will examine photosynthesis properties of plants

and algae using genome scale metabolic models (GSMs) and analyse responses of

the network to further develop our understanding of photosynthetic biochemistry.

The detailed discussion on GSMs and the mathematical concepts used to analyse

them will be presented in following chapters. This chapter will give an overview

of general biochemistry of plant metabolism and set a background for the rest of

the investigations carried out in this thesis.

1.3 Introduction of organisms

Arabidopsis thalaiana

A. thaliana, is a multicellular flowering plant and belongs to family Brassicaceae.

It is a popular model organism for cellular and molecular plant biology research

worldwide because of its many unique properties. It has a relatively small genome

size compared to other higher plants and 114.5 Mb out of 125 Mb of its total

genome has been sequenced (Arabidopsis Genome Initiative, 2000). It has a short

life span, of 8 weeks from germination to maturing its seeds, which are produced

in large amounts. The plant can grow in most environmental conditions and al-

though it has no agronomic value, it resembles many economically important crop

plants such as Brassica Napsus. Many scientists are striving to fully characterize

the functions of its approximately 25000 genes with the goal of providing access

to deeper understanding of plant development and environmental responses (Ara-

bidopsis Genome Initiative, 2000; Bevan and Walsh, 2005).
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Chlamydomonas reinhardtii

C. reinhardtii is a unicellular green algae, belonging to family Chlamydomon-

adaceae, and is a model organism for the study of photosynthesis (Merchant et al.,

2007). It can grow on phototrophic or mixotrophic, using other organic com-

pounds like acetate as source of carbon, conditions. Mixotrophic growth of C.

reinhardtii, on acetate, is faster (Boyle and Morgan, 2009; de Oliveira Dal’Molin

et al., 2011; Chapman et al., 2015) compared to its phototrophic growth. Many

scientific projects today are focused on algal research with the aim of identifying

sustainable and profitable sources of energy - biofuels. Algae based biochemical

products such as triacyl glycerols, methane and ethanol are all examples of poten-

tial biofuel precursors (Rittmann, 2008). Algae, along with other marine species,

fix almost half the inorganic carbon in the atmosphere (Field and Randerson,

1998). Besides that, algal metabolism is being explored for photoproduction of

hydrogen as an alternate biofuel (Baltz et al., 2014). More recently C. reinhardtii

has been identified as a potential host for producing high value compounds for in-

dustrial biotechnology through synthetic biology approaches (Scaife et al., 2015).

So a better understanding of metabolic behavior of algae becomes important on

the grounds of both economical and environmental prospectives.

1.4 Structure of a plant cell

Plants have a complex cellular architecture, divided into various compartments,

each of which carry out specific functions necessary for the organism’s survival and

growth. Two unique features in the structure of plant cells that distinguish them

from those of other eukaryotic organisms are the presence of the cell wall and the

chloroplast (Figure 1.1). The cell wall surrounds the cell membrane and is made

up of structural components such as cellulose, lignin and pectin. It functions

to provide support and rigidity to the cell, thus maintaining its structure. All

cellular components are membrane bound and are located within the cytoplasm

inside the cell wall (Figure 1.1). Each sub-cellular reaction space in the cell is

enveloped by at least one membrane which forms a diffusion barrier preventing the

uncontrolled exchange of intermediates (Linka and Weber, 2010). The chloroplast

(see Figure 1.1 for detailed structure) is the site for photosynthesis. Mitochondria

(see Figure 1.1 for detailed structure) house an electron transport chain that drives
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Figure 1.1: Schematic of a plant cell [top] showing the main organelles and
compartments. The cell wall and the chloroplast are the unique feature in
plant cells compared to other eukaryotic organisms. All the cellular com-
ponents are located within the cytoplasm. The chloroplast is the site for
photosynthesis. Mitochondria are important for production of ATP by ox-
idative phosphorylation. The vacuole is the largest compartment and helps
to maintain the cellular rigidity. In the mitochondria [more detailed structure
at bottom left], the outer membrane encloses the entire organelle while the
inner membrane encloses the matrix where ATP is produced with the aid of
ATP synthase contained in the membrane. Redox reactions of the oxidative
phosphorylation also take place in the inner membrane. The cristae in the
inner membrane expand the surface area of the inner membrane, enhancing
its ability to produce ATP. Similarly, in the chloroplast [bottom right], the
outer membrane is permeable to small organic molecules, whereas the inner
membrane is less permeable and has specific transport proteins. The inner
matrix, the stroma, contains grana of thylakoids where photosynthesis takes
place. The thylakoids enclose the thylakoid lumen.
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the synthesis of ATP by oxidative phosphorylation. The nucleus contains most of

the genetic information organised as DNA and controls the activity of the cell

by regulating protein synthesis within the cell. The nucleolus located inside the

nucleus is the site for the synthesis of RNA. The vacuole is the largest compartment

in the cell and contributes to the rigidity of the plant by developing hydrostatic

pressure, storage of nutrients and breakdown of complex molecules. Metabolic

interactions between the cellular compartments are required for a cell to operate

as a functional unit. Metabolites are exchanged between the compartments for the

supply of energy components or metabolic precursors. Thus in order to understand

the complete functioning of the cell, it is important to know both how the different

metabolic processes are compartmentalised and how they are linked together and

controlled. The metabolic reactions in five main compartments and the underlying

interactions between them are discussed below.

1.4.1 Photosynthesis : Chloroplastic metabolism

Photosynthesis is the process in which plants and algae synthesise organic com-

pounds utilizing light, inorganic substances, and water. It is composed of two main

components, light harvesting and carbon fixation, both of which take place in the

double membrane-bound organelle, the chloroplast (Figure 1.1)

Electron transport chain

The electron transport chain (ETC) is a processes that transfer electrons across

the membrane, from thylakoid lumen to chloroplast stroma, coupled with trans-

fer of protons thus creating an electrochemical gradient, the proton motive force

(PMF), that drives the synthesis of ATP. There are four main protein complexes

in the thylakoid membrane, Photosystems I and II (PSI and PSII), Cytochrome

b6f (cyt b6f) and ATP synthase (Figure 1.2). Light is absorbed at the PSI and

PSII, at wavelengths 700 nm and 680 nm, respectively.

PSII upon absorption of a photon, transfers an electron, generated from water,

to an electron acceptor called plastoquinone (PQ) creating a pool of electrons (PQ

pool). PQ carries the electrons from PSII to the cytochrome b6f complex and

itself gets reduced, to plastoquinol (PQH2). The PQH2 thus formed transfers its

electrons through an intermediate electron transfer complex, cytochrome b6f, to
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Figure 1.2: Simplified schematic representation of the photosystems located
in the thylakoid membrane and the electron transport chain. Light absorbed
in the PSII is used to transfer electrons, generated from oxidation of wa-
ter, through cytochrome b6f to PSI thus reducing NADP+ to NADPH. The
concomitant release of proton in the lumen creates a gradient across the
thylakoid membrane which is used to drive the synthesis of ATP.
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the PSI. In the cytochrome b6f, electrons are passed one at a time from plasto-

quinol (PQ) to plastocyanin (PC), a water soluble electron carrier found in the

thylakoid lumen, also leading to transport of a proton from stroma to lumen. The

final stage of the light reactions are catalysed in PSI where a special pair of chloro-

phyll A molecules upon excitation transfer an electron through a chlorophyll and a

bound quinone to a set of iron-sulfur (4Fe-4S) clusters. From here the electrons are

transferred to ferredoxin (Fd), a water soluble mobile electron carrier located in

the stroma. Further, the transfer of electrons from reduced ferredoxin to NADP+

is catalysed by a flavoprotein ferredoxin-NADP+ reductase (FADH2). This com-

plex contains a tightly bound FAD which accepts the electrons one at a time from

Fd. The FADH2 then transfers a hydride to NADP forming NADPH. The uptake

of a proton by NADP+ contributes to the pH gradient across the membrane. The

proton motive force thus generated is used to drive the synthesis of ATP by the

ATP synthase complex.

The phosphorylation of ADP to ATP is called photophosphorylation, which hap-

pens in a cyclic and a noncyclic manner. In the cyclic phosphorylation, electrons

travels in cyclic manner between cyt b6f complex and the PSI, the process of which

pumps the protons across the thylakoid membrane producing a pH gradient which

then drives the synthesis of ATP (Figure 1.2, bold lines). The cyclic process does

not involve PSII and only generates ATP. In non-cyclic phosphorylation, electrons

travel in non-cyclic manner involving both PSI and PSII and generate ATP and

NADPH.

Carbon assimilation

The process of converting inorganic carbon from atmospheric CO2 to organic car-

bohydrate derivatives by using the ATP and NADPH generated from the light

reactions, is referred to as CO2 assimilation or CO2 fixation. The process occurs

in the chloroplast stroma. The Calvin cycle, more correctly known as the Calvin-

Benson-Bassham Cycle, in honor of Melvin Calvin and his collaborators Andrew

Benson and James Bassham for its discovery (Bassham et al., 1950; Benson, 2002;

Bassham, 2003), is the primary pathway to fix the external carbon and make it

available to rest of the metabolism. The process is also referred to as the reductive

pentose phosphate pathway (RPPP) because reduction happens and pentoses are
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Figure 1.3: Different functional limbs of the Calvin cycle along with OPPP
reactions are shown in different colors. Assimilation limb shown in green; r1
RuBisCO. Reduction shown in purple; r2 PGKin, r3 G3Pdh. Regeneration
in red; r4 TriPIsom, r5 FBPAld, r6 FBPase, r7 TransketI, r8 SBPAld, r9
SBPase, r11 TransketII, r12 Rub5PIso, r13 Rib5PEpi, r14 PRK, Storage
in olive; r15 StSyn, r16 GlyPhos, r17 PGM, r18 PGI. OPPP in blue; r10
Transald and r19 lumped reaction of G6Pdh, 6PGLac and PGluDh. The
exchange of triose-phosphate molecules are represented in light blue color.
Activity of four of the reactions in the cycle, r3, r6, r9, r14 is controlled
by the Thioredoxin system represented in Figure 1.4. Figure adapted from
(Poolman et al., 2003).
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formed during the process (Heldt and Piechulla, 2011a). Based on function of

reactions in the cycle, the whole process can be divided into four sections, referred

to as limbs; assimilation, reduction, regeneration and storage (Figure 1.3) (Heldt

and Piechulla, 2011a; Salisbury and Ross, 1992).

During the assimilation process, the enzyme ribulose1-5-bisphosphate carboxylase-

oxygenase (RuBisCO, r1 in Figure 1.3) catalyses the carboxylation of CO2 acceptor

molecule ribulose-1,5-bisphosphate (RuBP), a five carbon compound, to form two

molecules of 3-phosphoglycerate (3-PGA), a three carbon compound.

The PGA generated from CO2 assimilation is converted to the triose phosphate

molecules GAP and DHAP in a two step process using ATP and NADPH in the

reductive limb of the cycle (r2, r3 in Figure 1.3.) The first step catalysed by phos-

phoglycerate kinase (PGK) attaches the phosphoryl group of ATP molecule to form

BPGA. BPGA is then reduced by NADPH in the reaction catalysed by G3Pdh

yielding GAP and NADP+İn the regenerative phase, triose phosphate molecules

are used to regenerate RuBP by rearrangement of carbon skeletons in a series

of 10 reactions catalysed by the enzymes triose-phosphate isomerase (TriPIsom),

fructose-bisphosphate aldolase (FBPAld), fructose-bisphosphatase (FBPase), trans-

ketolase (TransketI), sedoheptulose-bisphosphatase aldolase (SBPAld), sedoheptulose-

bisphosphatase (SBPase), glycoaldehyde transferase or transketolase-II (Trans-

ketII), ribose-5-phosphate isomerase (Rub5PIso), ribulose-phosphate 3-epimerase

(Rib5PEpi) and phosphoribulokinase (PRK) (Farquhar et al., 2001; Heldt and

Piechulla, 2011a) (Figure 1.3).

The stoichiometry of the Calvin cycle requires five out of six triose phosphates

formed by photosynthesis to regenerate 3 molecules of RuBP while the remain-

ing one is utilised to produce starch, sucrose and other end products (Heldt and

Piechulla, 2011a). The storage limb of the cycle (r15 -r18 in Figure 1.3) is involved

in synthesis of the starch during the day and its degradation at night.

Various intermediates produced during the Calvin cycle are used in different parts

of metabolism: the shikimate pathway uses the E4P to produce amino acids and

lignin; G3P is used in the synthesis of secondary metabolites such as isoprenoid,

and R5P is used for thiamine metabolism and cell wall biosynthesis. Nonetheless, it
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is extremely important that a balance is maintained between the amount of carbon

leaving the cycle and that retained to regenerate RuBP, for continual functioning

of the cycle. The excessive production of other carbon derivatives (E4P, R5P) will

inhibit photosynthesis as RuBP cannot be regenerated, while a low rate of end

product generation will lead to problems such as accumulation of phosophorylated

intermediates or depletion of free phosphate (Heldt and Piechulla, 2011a). Thus,

there is a regulatory mechanism that controls the carbon flux in the Calvin cycle

by controlling the activity of its different enzymes (Buchanan, 1980, 1991; Scheibe,

1991; Jacquot et al., 1997).

Oxidative pentose phosphate pathway

Besides the reductive pentose phosphate pathway, the chloroplast also contains the

enzymes of the oxidative pentose phosphate pathway (OPPP) which operates in

the absence of light and oxidises a hexose phosphate to a pentose phosphate (Heldt

and Piechulla, 2011a). The main function of the OPPP is to oxidise glucose phos-

phate and reduce NADP to generate NADPH, CO2 and pentose phosphate. The

pathway comprises reactions catalysed by G6Pdh, 6PGLac and PGluDh (shown

as a single lumped reaction in Figure 1.3). Another important reaction of the

pathway is Transald (r10 in Figure 1.3) Along with the Transald, all the OPPP

reactions are active both in plants and algae under dark conditions (Buchanan and

Balmer, 2005; Michelet et al., 2013).

Degradation of starch serves as an alternate source of carbon and energy dur-

ing dark, when OPPP reactions are active. The starch is stored as granules in

the chloroplast and contains two major sub-classes of alpha-glucans: amylose and

amylopectin. Amylose contains fewer glucose molecues and has an 1,4-glycosidic

linkage while amylopectin contains more glucose molecules and has additional 1,6-

glycosidic linkage, thus is more branched. In order to use starch as a carbohydrate

source overnight, the plant has to cleave these linkages and split starch into maltose

and glucose. These species can then be transported into the rest of metabolism.

Thioredoxin regulation

Plants and other photosynthetic organisms have to continuously adapt their meta-

bolism to changing light conditions. As the enzymes of both the reductive and
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plasts. Chloroplast proteins are reduced by ferredoxin-dependent thioredoxin
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to free TRXs. The reduced TRX then catalyses the reduction of disulfide
(s-s) within oxidised target proteins. Figure adapted from Michelet et al.
(2013).

the oxidative pentose phosphate pathways are located in the chloroplast stroma,

a concurrent operation of both of these pathways would represent a futile cycle

consuming 3 molecule of ATP in each turn (Heldt and Piechulla, 2011a). Thus, a

regulatory system, which prevents such waste of energy, operates in the stroma, ac-

tivating RPPP in light and OPPP in the dark. The regulation is brought about by

the modification of cysteine residues controlled by small disulfide oxido-reductases

called thioredoxins (TRXs) (Michelet et al., 2013; Nikkanen and Rintamäki, 2014)

The thioredoxin systems are an important part of the redox network, connecting

light signals to chloroplast functioning (Nikkanen and Rintamäki, 2014). Figure

1.4 shows the mechanism of redox activation of the thioredoxin system in the

plant chloroplast. The overall system consists of three types of soluble proteins

located in the stroma; ferredoxin (Fd), ferredoxin/thioredoxin reductase (FTR)

and thioredoxin (TRX). Upon availability of light, ferredoxin is reduced by the

photosynthetic electron transport chain at PSI. The disulphide bonds in thiore-

doxin are reduced in a reaction catalysed by the enzyme ferredoxin-thioredoxin

reductase when they receive the electrons. Thus reduced thioredoxin donates elec-

trons for the reduction of disulphide bonds in four of the light-active Calvin cycle

enzymes. These reductive reactions are accompanied by conformational changes

that increase the activity of the enzyme. Under dark conditions, all these enzymes

are inactivated as a result of re-oxidation of the disulphide bonds, thus stopping

the CO2 assimilation. The mechanism of light-dependent regulation of carbon

13



assimilation enzymes is considered as the best characterized mechanism of redox

signalling in photosynthetic organisms (Foyer and Noctor, 2005).

Various biochemical measurements and enzymology experiments have established

that Calvin cycle enzymes SBPase, FBPase, PRK, RuBisCO and G3Pdh along

with G6pdh from OPPP are subject to regulation by light-dependent post-translational

redox modification by thioredoxin (Buchanan and Balmer, 2005), light dependent

change in pH and Mg2+ feed back regulation by their product and allosteric regula-

tion by other metabolites (Heldt and Piechulla, 2011a; Stitt and Sonnewald, 1995).

The activity is mediated through reducing power produced by photosynthetic light

reactions and is transferred by ferredoxin and thioredoxin to a disulphide bond in

these enzymes thus activating them under light conditions and inactivating them

under dark (Raines et al., 2000; Buchanan, 1991; Buchanan and Balmer, 2005).

1.4.2 Mitochondrial metabolism

Mitochondria provide the chemical energy from the oxidative degradation of or-

ganic and amino acids in plant cells (Mackenzie and McIntosh, 1999; Logan, 2006).

They are composed of a smooth outer membrane surrounding an inner membrane

with folds -the cristae, which provide increased surface area (Figure 1.1) The most

important processes of mitochondria are the Tricarboxylic Acid (TCA) cycle and

the electron transport chain.

Tricarboxylic Acid Cycle

The TCA cycle plays an important role in the complete oxidation of pyruvate to

CO2, generating reducing equivalents and TCA intermediates that serve as sub-

strates for various biosynthetic pathways (Laloi, 1999; Haferkamp, 2007). Figure

1.5 represents the reactions and associated cofactors in the TCA cycle. Pyruvate

enters the mitochondrial matrix through a pyruvate carrier. The cycle starts with

the oxidation of pyruvate, catalysed by pyruvate dehydrogenase (PYRdh), located

in the mitochondrial matrix, to form Acetyl CoA (AcCoA) with the concomitant

release of CO2 and reduction of NAD to NADH. The AcCoA thus produced is ox-

idised through a series of nine reactions forming a cycle known as the TCA cycle.

The first step of the TCA cycle is the conversion of AcCoA to citrate by citrate
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Figure 1.5: Representation of the TCA cycle reactions in the mitochondria.
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synthase (CitSyn) (Fernie et al., 2004). Aconitase (ACN) then converts citrate to

isocitrate via the bound intermediate cis-aconitate. ACN is also reported to play

a crucial role in regulating carbon metabolism (Carrari et al., 2003) which is in

agreement with the suggestion that the TCA cycle has a role in the illuminated

leaf. The isocitrate thus produced is oxidatively decarboxylated to 2-oxoglutarate

by either NAD+ or NADP+ dependent isocitrate dehydogenases (ICdh), generat-

ing CO2 and NADH or NADPH respectively. Another oxidative decarboxylation

reaction that catalyses the 2-oxoglutarate dehydrogenase complex (aKGdh), con-

verts 2-oxoglutarate to succinyl CoA, producing more CO2 and NADH. Succinyl

CoA ligase (SClig) subsequently couples the synthesis of ATP from ADP and Pi

with the concomitant conversion of Succinyl-CoA to succinate. Succinate dehy-

drogenase (SUCdh), also referred to as Complex II, catalyzes the oxidation of

succinate to fumarate with simultaneous reduction of ubiquinone (Q) to ubiquinol

(QH2). Further, the reaction catalyzed by fumarase (FUMhyd) converts fumarate

to malate which is then oxidized to oxoloacetate (OAA) by NAD+ dependent

malate dehydrogenase (MALdh) to complete the cycle.

The MALdh is an important reaction not only for NADH oxidation but also as a

component of the malate-aspartate and malate-OAA shuttles for the exchange of

substrate, and reducing equivalents across the mitochondrial membrane.

Oxidative Phosphorylation and the ETC

Oxidative phosphorylation or the mitochondrial electron transport chain (ETC)

oxidises NADH generated from the TCA cycle and release electrons that are carried

through a chain of electron carriers embedded in the inner membrane, leading to

the formation of ATP. Figure 1.6 represents the oxidative phosphorylation and the

flow of electrons across the mitochondrial matrix. NADH dehydrogenase, (repre-

sented as Complex I in Figure 1.6) is the first protein in the chain and catalyses the

transfer of electron from NADH to ubiquinone. Similarly, the succinate dehydroge-

nase, represented as (Complex II), catalyses the transfer of electrons from succinate

to quinones. The reduced quinone (Q) serves as a carrier of electrons which are

passed to cytochrome bc1 complex (Complex III). Here, the electrons are passed to

cytochrome C that delivers the electrons to cytochrome oxidase (COX) (Complex

IV), which completes the chain by transferring them from reduced cytochrome
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C to O2. A concomitant flow of protons from the matrix accompanies the flow

of electrons through these complexes which creates an electrical gradient across

the membrane. As the membrane is impermeable to protons, the proton-specific

channel of the ATPase complex is the only route through which the protons can

re-enter the matrix. Such movement of protein across the membrane is catalysed

by the ATP synthase (Complex V) and results in the synthesis of ATP (Saraste,

1999).

1.4.3 Cytosolic metabolism

The plant cytosol is the intracellular space that functions to support other com-

partments in the cell and also acts as a link between intercompartmental transports

(Ito et al., 2014). A wide range of biochemical interactions such as synthesis and

degradation of various amino acids, sucrose and cellulose take place in the cytosol.

The glycolytic pathway plays a major role in utilisation of carbohydrates and is

present at least in part in all living organisms (Heldt and Piechulla, 2011a). Each

cell has two sets of glycolytic enzymes, one localised in the cytosol and other in

the plastid, each encoded by different genes. Some enzymes which take part in

cytosolic glycolysis have a plastidic isoform and are involved in the Calvin cy-

cle. The net effect of glycolysis is the oxidation of one molecule of glucose to

two molecule of pyruvate with the generation of ATP and NADH (Plaxton, 1996).

The pathway also produces five other important precursor metabolites: glucose-6P;

fructose-6P; glycerone phosphate; 3-phospho-D-glycerate and phosphoenol pyru-

vate. These are used in other parts of metabolism. Figure 1.7 depicts the gly-

colytic pathway. The breakdown of glucose to pyruvate happens in two phases.

The first phase is involved in phosphorylation of glucose released either from su-

crose or starch to glucose-6-phosphate. The enzyme phosophoglucose isomerase

(PGI) then converts G6P to F6P which is further phosophorylated by phospho-

fructokinase (PFK) to form fructose-bis-phosphate (FBP) (r2 1.7). FBP is then

converted to DHAP and GAP by fructose bisphosphate aldolase (FBPAld). In the

second phase two molecule of GAP are oxidised and phosophrylated by phospho-

rylating NAD-dependent GAP dehydrogenase (GAPdh) to form two molecule of

1,3-bisphosophoglycerate (BPGA) coupled by formation of NADH molecules (r5

1.7). In the following reaction, catalysed by the enzyme PGK, phosphoglycerate

mutase (PGM), phosphopyruvate hydratase (PPH) and pyruvate kinase (PyrKin),
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Figure 1.7: Glycolysis in the cytosol, converts the glucose, coming either
form degradation of starch in the chloroplast or sucrose in the cytosol, to
pyruvate with net production of ATP, in a series of intermediate reactions.
r1, PGI; r2, PFK; r3, FBPAld; r4, TPI; r5, GAPdh; r6, PGK; r7, NP-GAPdh;
r8, PGM; r9, PPH; r10, PyrKin
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Figure 1.8: Representation of the synthesis and degradation of sucrose. r1,
SUCSyn; r2, NDPK, r3, UDPPyPh; r4, HK; r5, PGM; r6, PGI

two molecules of BPG are converted to two molecules of pyruvate also leading to

the formation of four molecules of ATP.

Sucrose synthesis and degradation

Sucrose is one of the major products resulting from carbon fixation during photo-

synthesis. The triose phosphates generated from the Calvin cycle are transported

from the chloroplast into the cytoplasm by TPT tranlocators and transformed

to hexose posphate via the gluconeogenic pathway. These hexoses are used in

sucrose biosynthesis in the cytoplasm. Like in case of starch biosynthesis, G1P

reacts with a nucloside, UTP instead of ATP, to form UDP-glucose by the enzyme

UDP-glucose pyrophosphatase (r3 in Figure 1.8). In the next step the conden-
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sation between UDP-glucose and F6P by the enzyme sucrose synthase results in

the formation of sucrose (r1 in Figure 1.8) However, the reaction is reversible

and is also involved in the degradation of sucrose by catalysing the formation of

UDP-glucose and fructose from UDP and sucrose. The enzyme occur mostly in

non-photosynthetic organelles, such as the amyloplast supporting starch synthesis.

Sucrose synthase also supports the synthesis of cellulose by delivering the glucose

molecule in the form of UDP-glucose to cellulose synthase in the plasma membrane.

Sucrose is also oxidised by the glycolytic enzymes to generate energy equivalents,

reductants, and building blocks for anabolism, thus serving as a starting point for

glycolysis and end point of gluconeogenesis in higher plants (Sung et al., 1988).

1.4.4 Interaction between compartments

The interplay of the metabolic processes between different compartments requires

transfer of substances across the cellular membrane as well as between cells. Meta-

bolism in every compartment depends upon these interactions for supply of energy,

redox equivalents and metabolic precursors. Thus the metabolite transporters con-

tribute to control the fluxes of solutes between compartments and are an essen-

tial part of metabolic networks (Philippar and Soll, 2007; Lunn, 2007). Protein

structure predictions on A. thaliana have identified 1800 genes that could encode

membrane proteins with transport functions (Schwacke et al., 2003).

There are various ways in which transfer of compounds takes place between com-

partments such as using specific translocators, channels, pores, via vesicles trans-

port or by non specific diffusion through membranes (in the case of CO2 and O2)

(Heldt and Piechulla, 2011b). When a molecule is moved across the membrane

without help from any other metabolites, it is called uniport transport while the

counter-exchange of molecules is called antiport transport. A simultaneous trans-

port of two substrates in the same direction is called symport. A transport system

which involves charge transfer along with uniport, antiport or symport transport

is known as electrogenic transport. Involvement of photochemical reactions in

the transport process is termed as primary active transport (Heldt and Piechulla,

2011b). The following section will provide an overview of transport systems related

to photosynthesis focusing mainly on the mechanisms which connect the metabolic

responses investigated within the scope of this thesis.
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Chloroplastic transporters

The core reactions of photosynthesis occur exclusively in the chloroplast. How-

ever the efficient and complete operation of photosynthesis critically depends on

the presence of transport proteins that connect the chloroplast with other com-

partments. The stoichiometric coupling through transmembrane flux across com-

partments is vital for photosynthesis (Weber and Linka, 2011). The selectively-

permeable chloroplast inner membrane (Figure 1.1) represents the interface be-

tween chloroplast and cytosol.

Triose phosphate transport Triose-phosphate translocators (TPT) located

in the chloroplast inner membrane mediate the transport of TPs between the

chloroplast and the cytosol. They catalyse the antiport transport of TPs or PGA

with strict one-to-one stoichiometry for counter-exchange of Pi (Flugge and Heldt,

1984; Flügge et al., 2011). The net effect of each transport step is equivalent to

three reduced carbon atoms, with no net transport of phosphate (Brautigam and

Weber, 2011). Dissecting the physiological role of this transport protein is com-

plex since TPs can either be exported to cytosol or stored inside the chloroplast

in the form of transitory starch. Inorganic phosphates released from TPs during

these biosyntheses are made available to chloroplast for continual operation of the

photosynthetic machinery (Brautigam and Weber, 2011). This kind of exchange

also provides a regulatory link between photosynthetic rates and cytosolic carbon

metabolism (Brautigam and Weber, 2011). For example, decrease in the level of

Pi in the cytosol indicates limited synthesis of sucrose, which means the Pi is not

available for counter exchange with TPs. This in-turn promotes the reduction of

triose phosphate, in the chloroplast itself, to be used for synthesis of starch.

Breakdown of transitory starch is critical to support metabolism during the night.

Starch is broken down mainly to maltose and to lesser extent to glucose, both of

which are exported to cytosol to be used for synthesis of sucrose (Weise et al.,

2004). The export of maltose is mediated by a maltose exporter and glucose by

the chloroplastic glucose transporter.

Hexose phosphate transport Another important transport system of the

chloroplast is the G6P transport, mediated by the glucose-6-phosphate transloca-

tors (GPT). The expression of the GPT gene is mainly restricted to heterotrophic
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Figure 1.9: The TP-PGA shuttle between the chloroplast and the cytosol.
TPs generated in the chloroplast are exported to cytosol are oxidised back
to PGA with the net effect of one molecule of ATP and NADH released into
the cytosol. r1, BPG; r2, GAPdh; r3, TPI, r4, TPIcy; r5, GAPdhcy; r6,
NAD-GAPdh; r7, BPGdh

tissue (Kammerer et al., 1998) where its main function is to import G6P into

the amyloplast. Transgenic experiments conducted by Niewiadomski et al. (2005)

suggest that the import of G6P into the amyloplast is crucial for pollen mat-

uration and gametophyte development. GPTs are highly expressed in stamens

during plant development or in senescent leaves during flowering (Knappe et al.,

2003; Niewiadomski et al., 2005). However, in-vivo experiment of transcript anal-

ysis, performed on samples from maize, pea and potato leaves, suggest that the

GPT genes are not expressed in photosynthetic tissues (Kammerer et al., 1998).

Nonetheless, expression has been noted, to a lesser extent, in guard cells and

mesophyll cells. The guard cells lack FBPase activity and therefore rely on the

availability of hexose phosophates transported for starch biosynthesis.

Shuttle systems in the chloroplast

The reducing equivalents generated in the chloroplast are essential for enzymatic

reactions in other compartments and must be transported. Due to their large

size and charge, they cannot penetrate the selectively permeable inner chloroplast

membrane. Two redox shuttle mechanisms, TP/3-phosphoglyceric acid (3-PGA)
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Figure 1.10: Representation of MAL-OAA shuttle between the chloroplast
and the cytosol. OAA is converted to MAL by NADH dependent MALdh
in the chloroplast and transported to the cytosol. MAL in the cytosol is
converted back to OAA by NAD dependent MALdh. The export of MAL is
accompanied by concomitant import of OAA in the chloroplast thus acting
as a shuttle system. r1, NADP-MALdh; r2, NAD-MALdh
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shuttle and the malate/oxaloacetate (OAA) shuttle, export these reductants out

of the chloroplast and operate by the redox gradient between the chloroplast and

the cytosol (Heineke et al., 1991). To maintain a proper balance of reductants and

metabolites, the shuttle systems are finely controlled in response to stromal redox

state (Taniguchi and Miyake, 2012). Moreover, as the energy components are not

always consumed and produced evenly in the chloroplast, the redox shuttle also

helps to maintain a balance in the ATP-NADPH ratio (Kramer and Evans, 2010).

The TPT of higher plants can exchange the TPs from 3PGA with net move-

ment of one reducing equivalent. At first PGA is converted to triose phosphate,

GAP and then to DHAP, by the use of ATP and NADPH (r1, r2, r3 in Figure

1.9). TP is exported to the cytosol by TPT and oxidised back to PGA, by the

coupling of NAD dependent GAPdh and PGK, generating ATP and NADH. Thus

for every molecule of TPs exported, one molecule of ATP and NADH each is re-

leased into the cytosol. However, if the conversion of GAP to PGA happens by

the NAD-dependent non-phosphorylating GAPdh, only one molecule of NADH is

released. This shuttle also maintains the redox level between the NADPH-NADP

ratio in the stroma and the NADH-NAD ratio in the cytosol primarily by limiting

the oxidation of TPs in the cytosol (Heineke et al., 1991).

The MAL-OAA shuttle is mediated by the dicarboxylate translocator DiT1 (Taniguchi

et al., 2002). It exchanges OAA for malate and catalyses the net movement of one

reducing equivalent without net C4 acid transport (Renne et al., 2003). As shown

in Figure 1.10, OAA in the chloroplast is reduced to MAL by the reaction catalysed

by the NADP-dependent malate dehydrogenase(NADP-MALdh). In the cytosol,

MAL is converted back to OAA by a similar reaction catalysed by NAD depen-

dent MDH (NAD-MALdh). The shuttle is initiated by the export of malate to

the cytosol via malate transporters that are also linked to the OAA transporters

such that any export of MAL results in a concomitant import of OAA, creat-

ing a MAL-OAA antiport system (Neuhaus and Wagner, 2000). The shuttle also

functions as a safety valve, the so called malate valve, to export excess reducing

equivalents from the chloroplast. The consumption of NADPH and regeneration of

the electron acceptor NADP during the shuttle lowers redox status in the stroma.

The valve also plays a role in carbon-nitrogen metabolism. Reducing equivalents

exported by this valve can be used in oxidative electron transport in the mitochon-
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dria and photorespiratory metabolism in the peroxisome (Scheibe, 2004; Noguchi

and Yoshida, 2008; Kinoshita et al., 2011).

ATP transport

The ATP-ADP translocators, are located in the chloroplast membrane (Heber

and Santarius, 1970; Knappe et al., 2003). However, the activity of the ATP-ADP

translocator on the chloroplast membrane, is very low, suited only for importing

ATP into the chloroplast (Neuhaus and Wagner, 2000) and does not play a major

role during the day. The maximum rate of ATP import, mainly observed in young

leaves, has been found to be 10-fold lower than that of other metabolites such as

Pi (Flugge and Heldt, 1991). The capacity for ATP transport in the chloroplast

envelope have been reported to be 100-fold lower than that for TPs and that the

knockout of the plastidial ATP transporter genes (NTTs) was found to have no

effect on photosynthetic metabolism (Reiser et al., 2004). On the other hand,

import of energy in the form of ATP is deemed necessary, to energise anabolic

and catabolic reactions such as starch and fatty acid synthesis, in storage plastids

and amyloplasts, at night (Neuhaus et al., 1993; Neuhaus and Schulte, 1996). The

import of ATP into the stroma is also regulated by the distribution of ATP-ADP

gradients in the cell and the ratio is higher in cytosol than in stroma both in

photosynthesising and non-photosynthesising leaves (Heineke et al., 1991).

Mitochondrial transport

The TCA cycle operating in the mitochondria also provides reducing equivalents

and carbon skeletons to other pathways. Regular exchange of molecules between

the mitochondrial matrix and cytosol takes place via the mitochondrial membrane

(Figure 1.1). Metabolites are transported by diffusion from the outer membrane

while the inner membrane contains specific transport proteins (Laloi, 1999; del

Arco and Satrústegui, 2005). The most abundant transporter in the mitochondrial

membrane is the ADP-ATP translocator which catalyses the export of ATP gen-

erated in the mitochondrial matrix through counter-exchange, electrogenic trans-

port, with cytosolic ADP (Klingenberg, 2008). Due to the membrane potential

generated by electron transport of the respiratory chain, ADP is preferentially

transported inward while ATP is pumped outward. In this way, the mitochondrial

ATP is supplied to other compartments (Klingenberg, 2008). Also, due to this
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phenomena, the ATP to ADP ratio in the cytosol is higher than in the mitochion-

drial matrix (Stitt et al., 1982; Heldt and Piechulla, 2011a).

Moreover, ATP synthesis via oxidative phosphorylation is dependent on the uptake

of Pi into the mitochondrial matrix (Rausch and Bucher, 2002). A high level of Pi

accumulation in the matrix is maintained by the mitochondrial phosphate carrier

which uses the pH gradient across the membrane, generated by the mitochondrial

electron transport chain, to facilitate the Pi influx into the membrane either by a

Pi-OH antiport or Pi-H+ symport.

A transport protein, dicarboxylate/tricarboxylate carrier mediates the transport

of dicarboxylates (ketoglutarate, oxaloacetate, malate, and succinate) and tricar-

boxylates (citrate, isocitrate, aconitate) by a counter-exchange mechanism. Sim-

ilarly, the export of the redox equivalents from the mitochondria is mediated by

the shuttles catalysed by mitochondrial membrane transport proteins. Examples

of such shuttle include the MAL-CIT shuttle, MAL-ASP exchange involving MAL-

2KG and GLT-ASP translocator.

1.4.5 Discussion

Eukaryotic organism are complex system to study due to their multi compart-

ment cellular architecture and interactions between them. The advent of modern

high-throughput molecular biology techniques such as genome sequencing, gene

expression profiling etc. have made organism specific genome annotations and bio-

chemical information widely available through public databases. Development of

highly efficient computational tools and techniques along with mathematical algo-

rithms have made it possible to derive biologically important information from such

experimental datasets and systematically study them to understand the structural

and dynamic properties of the organisms. In order to fully understand behaviors

resulting from the combined activity of multiple pathways, operating in different

compartments of a cell, a system wide study of their characteristic is essential.

Reconstruction of metabolic models, that can represent the interactions in an in-

dividual component, or entire biological networks, provide a platform to analyse

existing data and use the knowledge to predict new functions. These models can be

used to simulate metabolic or physiological responses under specific environmen-
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tal conditions or genetic manipulation leading to development of new hypotheses

and providing a guide to design new experiments. Although the reconstruction of

such metabolic models is increasingly popular, the quest to fully understand the

underlying capabilities of biological systems has not been achieved. The work in

this thesis is aimed to develop further insights into plant metabolic network with

special attention to their photosynthetic metabolism. The following chapters will

describe the concept of metabolic modelling, construction of the models and their

use to investigate various aspect of photosynthesis. The overall structure of the

thesis is outlined below.

1.5 Aims and Structure of the thesis

The overall structure of the thesis can be outlined as follows:

• Chapter 2 introduces the general concepts of metabolic modelling and method-

ologies that will be used in later chapters.

• Chapter 3 describes the process of reconstruction of the GSMs of A. thaliana

and C. reinhardtii and also presents the literature review of already existing

models.

• Chapter 4 describes various photosynthetic properties of the GSMs whose

constructions are discussed in Chapter 3.

• Chapter 5 describes the analysis of A. thaliana GSM, constructed in Chapter

3 and using the techniques discussed in Chapter 2, to investigate the prop-

erties of Calvin cycle enzymes and the effect of knocking out these reactions

from the model.

• Chapter 6 describes the analysis of the A. thaliana GSM, constructed in

Chapter 3 and using the techniques discussed in Chapter 2, to investigate

energy dissipation mechanism under high light conditions.

• Chapter 7 presents the overall discussions of the results presented in this

thesis and future perspectives.
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Chapter 2

Mathematical modelling of

metabolism - General

Methodology

2.1 Introduction

Metabolic systems consist of a number of biochemical reactions and associated

metabolites that are consumed and produced. Metabolic models can represent a

network of such reactions in mathematical notation as a set of variables and equa-

tions (Heinrich and Schuster, 1996). Once a model is created, it can be used as

a framework to apply certain logical and mathematical reasoning to simulate real

life situations, to study and to understand the functional behavior of an organism.

In this regard, a model can serve as a in silico lab, allowing us to perform complex

investigations in a short time compared to expensive in vivo experiments. The

predictions thus made from the model can be used to generate new hypotheses

and design new experiments with more information on what to expect.

Based on the particular properties of the system represented by a metabolic model

it can be classified as either structural or k inetic. Structural models are defined in

terms of stoichiometry and thermodynamics of the system. Information such as a

list of reactions, number of routes, optimal stoichiometries, network flux values can

be obtained from such models. In addition, kinetic models include kinetic proper-
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ties of enzymes and can generate time courses, steady-states, sensitivity analyses

or control distribution.

2.1.1 Fundamental concepts

A model consists of a list of selected metabolic reactions and associated metabo-

lites. These metabolites are categorised as internal or external based on the mod-

elling considerations. Internal metabolites are produced and consumed by intra-

cellular metabolism of the system under study while the external metabolites are

assumed to have constant concentration maintained by the environment and are

likely to be exchanged across the system boundary. Examples of external metabo-

lites include:

• source metabolites such as CO2 and sink metabolites such as biomass com-

ponents

• metabolites whose internal concentration is high enough that any change in

concentration is negligible. eg. H2O, sometimes polymers such as starch

All information about the link of substrates with product can be represented using

a matrix, termed as stoichiometric matrix, conventionally denoted as N (Figure

2.1). Thus the coefficients of all reactions in a system can be used to create the sto-

ichiometric matrix N of dimension m * n where each row, m, is a representation of

a metabolite and each column, n, a reaction. An element in N is the stoichiometric

coefficient of a metabolite in a particular reaction. Positive or negative value of

the indicates that the metabolite coefficient is being produced or consumed by the

corresponding reaction respectively, and a value 0 means that it is not involved in

the reaction (Heinrich and Schuster, 1996). The stoichiometry matrix represents

the structural architecture of a network and thus the knowledge of its properties

is prerequisite for any mathematical analyses (Schilling et al., 1999).

The concentration of the internal metabolites is not constant. It is determined by

their initial values and rates of their consumption and production by the reactions

in the system. Consider metabolite A, as represented in the Figure 2.1, is pro-

duced by the transporter, A tx and consumed by the reaction R1. Thus the rate

of change of A can be expressed as:

dA/dt = VA tx − VR1 (2.1.1)
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where, V A tx and VR1 are fluxes carried by reactions A tx and R1. Similarly,

the rate of change of all internal metabolites represented in Figure 2.1 can be

represented as a set of ordinary differential equations (ODEs), determined simply

by the stoichiometry of the network and the reaction rates, as shown below:

dA/dt = VA tx − VR1

dB/dt = VR1 − VR2 − VR3

dC/dt = VR2 − VR4

dD/dt = VR3 − VR5 − VR6

dE/dt = VR4 + VR5 − VE tx

dF/dt = VR6

(2.1.2)

Equation 2.1.2 can be more succinctly written as

dS/dt = N.v (2.1.3)

where S is the vector of the internal metabolite concentrations, N (shown in

Figure 2.1) is the stoichiometric matrix and v is the vector of reaction rates.

2.1.2 The steady-state assumption

There is a constant exchange of fluxes from the source to the sink in all metabolic

networks under steady state conditions, the concentration of the intermediates

remain constant because their rates of formation equals their rates of degradation.

This entails that the rate of production of all internal metabolites must always

equal the rate of their consumption and that their total concentration is invariant

to the time. The assumption is a base of most standard metabolic modelling

applications. The rate of change of the metabolite A, as discussed in the example

above, can thus be expressed as:

dA/dt = VA tx − VR1 = 0 (2.1.4)

This equation represents the relationship between the two steady state fluxes, but

is independent of their actual value, and is therefore also independent of their

kinetic characteristics (Poolman et al., 2004). If all the vectors representing the

reactions fluxes are represented as v and the vectors of zeros represented as 0, the

steady state of whole system, as shown in the Figure 2.1 can more concisely be
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N =

R1 R2 R3 R4 R5 R6 E tx A tx


−1 0 0 0 0 0 0 1 A

1 −1 −1 0 0 0 0 0 B
0 1 0 −1 0 0 0 0 C
0 0 1 0 −1 −1 0 0 D
0 0 0 1 1 0 −1 0 E
0 0 0 0 0 1 0 0 F

Figure 2.1: Diagram in A represents a simple hypothetical network. Metabo-
lites with preffix x represent external metabolites. The matrix, below the
diagram, represents the stoichiometric matrix (N), excluding the external
metabolites (x A and x E). Column in the matrix represents a reaction and
each row represents the stoichiometric coefficient of a metabolite in the cor-
responding reaction. Consumption of a metabolite by a reactions is denoted
by negative coefficient while production is denoted by positive coefficient,
elements for metabolites not participating in the reaction are filled with 0.
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written by modifying equation 2.1.3 as :

dS/dt = Nv = 0 (2.1.5)

The equation holds true for any system capable of reaching steady state, and

provides the foundation for the methods used in this thesis.

2.1.3 Structural Modelling

Structural models are constructed considering only the stoichiometry of the re-

actions and are designed to describe the network topology of the system rather

than its kinetic behavior (Poolman et al., 2004). All kinetic models are capable of

representing the structural properties, but the opposite is not true.

2.1.4 Null Space Analysis

The null-space of the stoichiometry matrix covers all possible steady state behav-

ior of a network and allows identification of relationship between fluxes thus can

be a base for most of the structural analysis. The equation 2.1.5 is a homoge-

neous system of linear equations and as the fluxes v are variables, the equation

is underdetermined, meaning there are infinitely many flux solutions that satisfy

the equation. This space of possible solutions is called the null-space and can be

derived from the stoichiometry matrix N, either by applying Gaussian elimina-

tion (Cornish-Bowden and Hofmeyr JH, 2002) or Singular Value Decomposition

(Famili and Palsson, 2003). The null-space can be defined mathematically using

a kernel matrix (K) where the columns are linearly independent vectors that to-

gether form a basis spanning the vector space (Schilling and Palsson, 1998) and is

more formally written as :

N ·K = 0 (2.1.6)

An example of kernel matrix for the example shown in Figure 2.1 is given by:

33



K =





1 1 R1

0 1 R2

1 0 R3

0 1 R4

1 0 R5

0 0 R6

1 1 E tx

1 1 A tx

Where each column represents a flux distribution and potential route through the

network. The row order of the kernel matrix is same as the column order of (N).

Although the null-space analysis does not take into account the thermodynam-

mics and it is rather hard to integrate experimental flux observations, some very

important steady state properties of a metabolic network can be derived from it.

Some of its applications are discussed below.

Dead Reactions

Reaction R6 shown in the kernel matrix above is an example of a dead reaction.

Mathematically, the rows with values of zeros in the kernel matrix correspond to

dead reactions, which cannot carry a steady-state flux. One of the reasons for

reactions to be dead is the presence of either orphan, or dead-end metabolites.

Orphan and dead-end metabolites are not calculated from K (null-space) but can

be identified from the stoichiometric matrix directly. Metabolite F as shown in

Figure 2.1 is an example of an orphan metabolite. These are the metabolites

which are involved with just one reaction in the network and are either consumed

or produced only by the reaction. They cannot be balanced at the steady state.

Mathematically, a row with single entry in the stoichiometric matrix represents

the orphan metabolite. Dead-end metabolites are the metabolites that are asso-

ciated with more then one reactions; however they are either only consumed or

only produced by these reactions. Mathematically, rows with more then one en-

try, in stoichiometry matrix, with either only positive or only negative coefficients

represent the dead-end metabolites, provided the reactions converted are all irre-

versible reactions; however they are only consumed or only produced. Any missing
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reactions from the network or reversibility issues that contribute to disconnected

network results in the orphan or dead-end metabolites.

Enzyme Subsets

Reactions R3 and R5 as represented in the kernel matrix K are an example of

enzyme subset (Pfeiffer et al., 1999). These are a set of reactions which will carry

steady state flux in a fixed proportion. Mathematically, row vectors in the kernel

matrix that are scalar multiple of each other (parallel vectors) correspond to en-

zyme subsets. If any of the reactions in a subset are removed, then the rest of the

reactions in the subset will have a zero flux at steady state. Similarly, all reactions

in a subset can be lumped together as a single equivalent reaction to reduce the

dimensionality of a network.

It is important to note that null space analysis does not take into account re-

action reversibility. For example even if reaction R3 in Figure 2.1 is defined in

opposite direction i.e

R3 : B ← D

the kernel matrix K would still be the same and the row vectors in K would still

suggest that reactions are in same subset. However, irreversible reactions in a

subset if defined in opposing direction cannot carry flux at steady state and thus

are referred to as inconsistent enzyme subsets. Metabolic models should be devoid

of such subsets and are recursively checked during the process of model curation.

Reaction Correlation Coefficient

Reaction Correlation Coefficients (RCC) can be calculated from the null space

K of the stoichiometric matrix and is an extension to the concept of enzyme

subsets discussed in section 2.1.4 (Poolman et al., 2007). RCC is similar to the

Pearson’s (population) correlation coefficient between the fluxes carried by the

pair of reaction i and j for all possible steady states in the model and is calculated

from the row vectors in the null-space. The angles between the row vectors of the

kernel matrix are unique provided the matrix is orthogonal i.e if all column vectors

are perpendicular to each other and are of unit magnitude. Hence, the RCC is

always calculated using the orthogonal kernel matrix where no row vector are zeros
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(dead reactions removed). Mathematically, RCC (φij) between the fluxes carried

by reactions in the kernel matrix K is calculated by the cosine angle (cos(θKij ))

between two row vectors Ki and Kj such that:

φij = cos(θKij ) =
KiK

T
j√

KiK
T
i

√
KjK

T
j

(2.1.7)

where, K is an orthogonal kernel matrix with m rows, i, j ∈ 1...n and θKij is the

angle between rows i and j in K. RCC is statistically identical to Pearson correla-

tion coefficient and is in the range [-1, 1] where 0 represent no correlation between

the reaction fluxes while 1 represent 100% correlation between the reaction pair.

The reaction correlation of a network can be visualised using the clustering of

reactions into hierarchal trees. Many algorithms can be used for this purpose.

Here, the WPGMA algorithm (Weighted Pair Group Method using Arithmetic

Averaging) (Morgan and Ray, 1995) has been used, which groups objects (reac-

tions) into clusters based on similarity measure (RCC) to generate dendogram.

Here, the absolute value of the RCC is used for clustering purpose. A dendo-

gram, can be visualised using phylogenetic tree viewing programs such as NJPlot

(Perrière and Gouy, 1996) and are, referred to as metabolic trees in this thesis. A

metabolic tree is generally composed of following components.

Graph : Collection of nodes joined by edges

Tree : An acyclic directed graph

Node : In a tree a node has 0 or 1 parent nodes and ≥ 0 or more children

Leaf node : A node with no children.

Internal node : A non-leaf node.

Sub-tree : An internal node and all its descendants.

Root node : A node with no parent and and one or more children. Every tree

has exactly one root

In a metabolic tree, each leaf node corresponds uniquely to a reaction, and all

other nodes thus represent a collection of reactions with related metabolic func-

tions. These metabolic trees are useful to interpret the properties of the metabolic

36



networks, identify disconnected subnetworks in the metabolic models and decom-

pose the large network to smaller functional modules. Absolute values of RCC

can also be used to study similarities between reactions by clustering them based

on correlation of fluxes carried by them. The analysis of such correlated fluxes

can help to identify specifically coupled reactions and functional modules in the

metabolic network. We have used the technique to identify energy dissipating cy-

cles under illuminated conditions in plants and algae, which will be discussed in

more details in Chapter 6.

Conserved Moieties

The conservation relationship between metabolites, also known as conserved moi-

eties is a characteristic feature of biological networks where certain molecular sub-

groups are conserved (Heinrich and Schuster, 1996; Hofmeyr, 1986). Some com-

ponents of conserved moieties are not synthesised or degraded by the metabolism

described by the model. Conserved moieties are identified by examining the linear

dependencies between metabolites in the left null space of stoichiometric matrix

N, which is calculated as the null-space of the transpose of N. Mathematically, it

can be expressed as:

KT ·N = 0T

or

NT ·K = 0 (2.1.8)

An example of such relationship is illustrated in Figure 2.2, where the sum of the

concentration of metabolites ATP and ADP is constant. These metabolites are

not consumed as product but are used as cofactors where one form is converted

to the other form and the sum of their concentrations always remains constant in

the system. This property can be derived by the analysis of left null space where

conserved moieties have the same coefficient.

2.1.5 Elementary Modes Analysis

The null-space does not take into account thermodynamic constraints on reactions

and it is rather hard to integrate experimental flux observations. These limitation
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Figure 2.2: A simple network diagram representing the conservation rela-
tionship, its associated stoichiometric matrix (N) and left null space (K).
Metabolites with suffix x are considered external and are not shown in the
matrix for simplicity. The left kernel, K, shows the conservation relationship
between metabolites ATP and ADP.
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Figure 2.3: Elementary modes for a simple hypothetical network. Reactions
involved in elementary mode are represented with green arrow while other re-
actions, in the network, that are not a part of elementary mode are presented
in gray. Both of the elementary modes, [a] and [b], convert metabolite x A
to metabolite x E and the mode cannot be further decomposed into smaller
functional subset. Also, all the participating irreversible reactions are active
in forward direction and thus are thermodynamically feasible.
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of the null-space analysis were addressed by the introduction of elementary (flux)

modes conceptualised by Schuster and Hilgetag (1994). The elementary mode

can be defined as a steady-state flux distribution by a minimal set of reactions

in a network such that they comply with the thermodynamic feasibility and can-

not be further decomposed into smaller subsets (Schuster et al., 1999; Schurmann

and Jacquot, 2000; Schuster et al., 2002). The thermodynamic criterion makes

sure that all irreversible reactions in the mode proceed in the appropriate direc-

tion while the non-decomposability criterion makes sure that the elementary mode

cannot be represented as a positive linear combination of any other flux modes in

the network and thus act as a minimal functional units within the network.

Consider the representative network shown in Figure 2.1. The two elementary

modes that occur in this network are represented in Figure 2.3 [a] and [b]. Both of

these modes satisfy all the condition stated above. They satisfy the steady state

assumption as all the internal metabolites are stoichiometrically balanced, they

are thermodynamically feasible as all the reactions involved are irreversible and

proceed in the appropriate direction and the modes cannot further be broken down

into smaller network.

Several algorithms have been described to compute the elementary modes such

as the canonical basis approach suggested by Schurmann and Jacquot (2000), the

null-space approach proposed by Wagner (2004) and the binary approach discussed

by Gagneur and Klamt (2004). Although all of these algorithm have their own

significance, their application is limited to smaller or medium sized network due

to combinatorial explosion in number of elementary modes in the larger (genome

scale) networks. The number of elementary mode increases exponentially with

increasing network size (Klamt and Stelling, 2002). The number of extreme path-

way (Schilling et al., 2000) (discussed in more details below) for the genome scale

model of human metabolism was found to be in the order of 1029 Yeung et al.

(2007). Such explosion can to some extend be controlled by changing reversibility

of reactions. Irreversible reactions reduce the number of elementary modes by

imposing additional thermodynamic constraints thus reducing the solution space

while the identification of enzyme subsets could reduce the computational load by

representing the subset with just a single reaction. Optimisation methods such

as genetic algorithms have also been used in conjunction with elementary mode
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analysis (Kaleta et al., 2009) to address the problems of combinatorial explosion.

In another slightly different approach, Sridharan et al. (2015) used the elementary

mode with a network partition method that is based on cyclic interactions between

reactions. Similarly, Pey et al. (2015) developed a method called TreeEFM, which

uses the linear programming-based tree search method to list subsets of elemen-

tary modes.

Schilling et al. (2000) has proposed an alternative approach to compute all unique

and minimal set of steady state flux distribution in the network, referred to as

extreme pathways. Extreme pathways are the subsets of the elementary mode

(Schuster and Hilgetag, 1994) with the additional feature of systemic indepen-

dence meaning none of the extreme pathways is a non-negative linear combination

of others. In other words coefficients of linear combinations in the extreme path-

way cannot be negative Schilling et al. (2000). Extreme pathways are identical to

elementary modes if all the reactions in the network are irreversible; however if

the reactions are reversible, they are decoupled into two separate reactions with

forward and backward direction and subsequently computed for the pathway for

the network. This property of extreme pathways makes them computationally less

expensive and thus they could be applied to relatively larger networks (Klamt and

Stelling, 2003). However, special consideration is required if extreme pathways are

to be used to study system properties as they do not produce a complete set of

independent routes within the metabolic network, which limits the assessment of

structural robustness and relative importance of reactions in the network (Klamt

and Stelling, 2003).The difference between elementary modes and extreme path-

ways is discussed in more detail by Papin et al. (2003).

A number of methods primarily based on the concept of elementary mode anal-

ysis have been developed to address these issues. Kaleta et al. (2009) developed

a method called EFMEvolver, that couples with a genetic algorithm to compute

elementary modes on the genome scale level by targeting specific functional modes

without having to compute the entire set of elementary modes.
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Applications of Elementary Modes Analysis

Elementary mode analysis allows the examination of the relationships between the

source and sink metabolites in a metabolic network and, further, the flexibility

(redundancy, robustness) of the network. It has thus been useful to investigate

the properties of metabolic network and proves to be a useful tool for metabolic

engineering (Papin et al., 2003; Gagneur and Klamt, 2004; Trinh et al., 2009).

Moreover, the knowledge of the frequency distribution of a particular reaction or

set of reactions in the elementary modes provides an idea of the importance of the

reaction, for the system’s performance, under the investigation conditions (Jorg

Stelling et al., 2004). It has been applied to several biological problems such as

study of biochemically relevant metabolic pathways (Carlson and Srienc, 2004), to

study metabolic network properties (Stelling et al., 2002; Behre et al., 2008) and to

optimise a microorganism with respect to the production of a certain metabolite

(Trinh et al., 2008). Carlson and Srienc (2004) were able to find four unique

pathways in E. coli, that most efficiently convert glucose and O2 into new cells

and maintain energy under any level of O2 limitation. In the case of plant models,

Poolman et al. (2003) applied EM analysis to a model of the Calvin cycle to study

light/dark metabolism. Similar work was also done on a TCA cycle model of plant

mitochondria to describe its physiological properties (Steuer et al., 2007).

2.1.6 Linear Programming/Flux Balance Analysis

Linear programming (LP) is a method to find an optimal solution to an under-

determined set of linear equation given a objective function f and set of constraints

S (Orth et al., 2010). For a metabolic system at steady state, the equation Nv=0

forms the set of linear equation for the unknown variables V. Then define additional

constrains or flux constrainsts on v and objective functions. Mathematically, it

identifies optimal solution to the Equation 2.1.5. The objective function is:

max or min f(V ) subject to V ∈ S (2.1.9)

Where, f is the linear objective function and S is the imposed constraint.

It assumes the system is at steady state and obeys the law of mass conserva-

tion (Fell and Small, 1986; Watson, 1986; Varma and Palsson, 1993). In general,
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minimisation of total reaction flux or maximisation of overall biomass yield are

used as objective functions (Holzhütter, 2006; Varma and Palsson, 1993) and the

requirement to synthesize biomass components is used as constraints. The func-

tion f is a linear function and the set of constraints, S, is described using linear

inequalities or equations such as Av ≤ b v ≥ 0. The constraints of the inequalities

specify a convex polytope over which the objective function is to be optimised.

The solution given must satisfy the constraints of the problem and among all the

solution that satisfies the constraints, LP will return the highest or lowest objective

function value which is referred as optimal value. If V ∗ is a solution to Equation

2.1.9 then f(V ∗) is an optimal value.

The objective function as minimisation will favor the flux solutions through those

reactions in the network which are collectively contributing to minimise protein in-

vestment, and is based on the assumption that cells prefer to minimise the protein

investment for growth. The main advantage of such constraint-based analysis is

the ability to predict the system behavior using a minimal knowledge base (Small-

bone and Simeonidis, 2009). Equation 2.1.10 shows the formulation of a general

LP problem.

minimise|maximise : vtargs

subject to

{
Nv = 0

LB ≤ V ≤ UB

(2.1.10)

where:

• v is the vector of reaction fluxes which can be minimised or maximised based

on the analysis

• Nv = 0 defines steady-state.

• LB ≤ V ≤ UB defines lower (LB) and upper (UB) bounds for additional

constraints such as thermodynamics constraints, demand for biomass pro-

duction, limits on reaction rates etc.
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2.1.7 Mixed integer linear programming

Apart from LP, a more advanced concept called Mixed Integer Linear Program-

ming (MILP), can be used for optimisation, in which each variable is associated

with both an integer (0 or 1) and a continuous value. The continuous value rep-

resent as before a valid solution to Nv=0 and the integer records whether the

continuous value satisfies some criterion eg Vi = 0. Constraints can be applied

to the integer variables, and optimisation is maximisation or minimisation of a

function of them (eg. minimise to number of reactions with v > 0) One of the

important application is to use the MILP iteratively to compute qualitatively dif-

ferent solutions to an FBA problem that have the same objective value (Lee et al.,

2000). MILP problems however are more complex and computationally expensive

compared to LP problems.

IBM-CPLEX is a software package for solving linear optimisation problem and

offers libraries to solve linearly or quadratically constrained optimisation problems

where the objective to be optimised can be expressed as a linear function or a con-

vex quadratic function. A build-in function of the IBM-CPLEX called populate

was used to enumerate alternative solution to a given mixed integer linear program-

ming (MILP) problem Detailed discussion of the features of IBM-CPLEX is outside

the scope of this thesis and interested readers are referred to the website https:

//www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

As in the case of LP, the first step is to define an objective and constraints to

the MILP problem. The objective function is set to all reactions in the model so

that the feasible region covers all intersecting modes. The constraints can then be

set to one or more target reaction to carry only positive flux. The MILP problem

is then solved. If a feasible solution is possible, the current solution is excluded

from the feasible space and the problem solved repeatedly until all combinations of

solutions are computed. This will generate multiple optimal solutions that satisfy

the same constraints either with the same or different objective values. All these

alternate solutions can be collected as a dataset for further analysis. Application

of MILP is discussed in more detail in Section 6.2.3.
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Application of LP/FBA

Early application of LP to study metabolism was described by Fell and Small

(1986) and Watson (1986). The term FBA was later coined (Varma and Palsson,

1993), when the technique was used to study synthesis of biosynthetic precursors in

E. coli. Since then the concept has been used widely to address various biological

questions. It have been used to identify targets for gene deletion (Beste et al., 2007;

Jamshidi and Palsson, 2007), product yield for metabolic engineering (Ågren et al.,

2013), and to study metabolism of plants and algae (Poolman et al., 2009; Boyle

and Morgan, 2009). However, predictions of metabolic fluxes by the models using

FBA are sensitive to the structure of the model, choice of objective functions

and constraints (Schuster and Fell, 2007; Raman and Chandra, 2009; Yuan et al.,

2016). It is also important to check if the predictions reflect the known behavior of

the metabolic network by examining whether the pathways of known physiological

importance are working as expected. But, this is not always feasible, especially

when we are investigating lesser known pathways. To address these issues, data

obtained from techniques such as 13C Metabolic Flux Analysis (MFA) are being

used to complement the FBA results (Masakapalli et al., 2010). Recent advances

are also aiming to identify the range of the optimal solution space, instead of just

a single solution, using techniques such as Flux Variability Analysis (Hay and

Schwender, 2014). More recently, integration of OMICS data to study capacity of

metabolic pathways is becoming increasingly successful (Töpfer et al., 2013).

2.1.8 Integration of proteomics data

Proteomics, transcriptomics and metabolomics data (omics) can be used to study

condition dependent changes into metabolic activity of the organism using metabolic

models as a platform. Proteomics and transcriptomics data can give important

information about the hierarchal regulation of metabolic flux by representing the

control over the maximum activity of enzymes (Yizhak et al., 2010). The metabolic

fluxes are the end result of the interplay of gene expression, protein concentration,

protein kinetics and metabolite concentrations and thus represent the metabolic

phenotype of the organism (Winter and Kromer, 2013). Thus, integration of

metabolic models with various genome and proteome data help to improve the

prediction of metabolic flux distribution.
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Several methods such as rFBA, PROM, eMAT, EFLUX, GIMME, tFBA, cited

in the review (Machado and Herrg̊ard, 2014), have been developed over the years

each with their own features, but primarily based on the assumption that the rate

of expression of genes or proteins is correlated with the flux carried by the reaction

associated with the gene or the protein.

The method used in this thesis is aimed at qualitatively comparing proteomics

data with metabolic activity and is based on the the assumption that reactions

which are associated with proteins present in higher amounts, are more likely to

be active in vivo. This is done by first identifying the genes associated with the

reaction and respectively mapping the amount of protein to the gene. The method

is simple to implement and does not require arbitrary user-defined threshold for

expression of gene or protein and need not exclude any reaction from the solution

space. However the only consideration with the method is to accurately map all

the reactions under investigation with the respective gene. This was done based

on the annotations derived from the BioCyc database through the PyoCyc module

in ScrumPy (see section 2.2.2). In total 4 different categories, in which a reaction

could be associated with a gene, were identified, which are discussed below using

example from the Arabidopsis model:

1. One to one

The reaction is associated with only one gene and it is unique to that re-

action. (the gene is not associated with any other reaction) eg. SBPase -

at3g55800, aspartate semialdehyde dehydrogenase - at1g14810

2. One to many

The reaction is associated with more than one gene but none of these genes

are associated with any other reactions in the model. eg. citrate syn-

thase - at3g58740, at3g60100, gqt-2323, at2g44350, at3g58750, at2g42790

phosphoenolpyruvate kinase- at3g55650, at5g56350, at5g63680, at3g25960,

at4g26390, at3g55810, at2g36580, at3g04050, at3g49160, at5g08570, at3g52990,

gqt-436, at3g22960, at1g32440, at5g52920

3. Many to one

The reaction is associated with single gene but the gene is also associated

with other reaction or reactions. In other word more than one reactions

are associated to a single gene. There is no unique relationship here. eg.
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glucose-6-phosphatase, 3-phosphoglycerate phosphatase - at5g34850, chloro-

phyll synthetase reactions (rxn1f-66, rxn-7674, rxn-7673) - at3g51820,

4. Many to many

The reaction is associated with more than one gene and any of those genes

are also associated with some other reaction in the model. eg. 1 transketo-

lase - at2g45290, at3g60750, gqt-437, transaldolase- at2g45290, at5g13420,

at1g12230, gqt-2336

In a case where a reaction is associated with more then one gene, the gene for which

its corresponding protein has maximum number of peptide counts was considered.

More detailed discussion of its application is presented in Section 6.2.4.

2.2 Metabolic Modelling Tools

Computational techniques have are long been used to study biological systems and

thus a variety of software and tools are available for metabolic modelling. Most

of these are designed to simplify the process of converting specified properties of

a metabolic model into mathematical objects and facilitate their analysis. Some

of the software such as BIOSSIM (Garfinkel, 1968), METASIM (Park and Wright,

1973), FACSIMILE (Chance et al., 1977), and SCAMP (Sauro, 1993) were designed

for kinetic model analysis and could only be used in batch mode. A software appli-

cation called COPASI (Hoops et al., 2006) also supports GUI usage. METATOOL

(Pfeiffer et al., 1999) is one of the earliest tool for structural analysis and has

a script-based user interface. Other programs that are available specifically for

structural analysis include CellNetAnalyzer (Klamt et al., 2007), Flux Analysis

and Modeling Environment (FAME) (Maarleveld et al., 2014). Constraint-based

reconstruction and analysis (COBRA) toolbox (Schellenberger et al., 2011) runs in

MATLAB although some implementations use Python. A more extensive Python-

based tool called ScrumPy (discussed in details below) is used in this thesis.

2.2.1 Python Programming Language

Python is a high-level, object-oriented, interpreted programming language and

can be used for wide range of scientific and numeric computing. It is syntactically

clear and easy to learn compared to other programming languages and is developed
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under an open source license, making it free to use and distribute. It has large

standard libraries such as SciPy, a collection of packages for mathematics, science,

and engineering and Pandas, a data analysis and modeling library. The Python

Package Index (PyPI) is a repository of software and hosts thousands of third-party

modules for Python. Moreover, it can easily be integrated with other programming

languages such as C, C++, Java and packages from their libraries. It supports

multiple programming paradigms such as object-orientation (Lutz and Ascher,

1999), which allows collection of data into objects or class instances. The data

collected in objects is referred to as attributes, objects also store functions that

usually perform actions on the attributes. Objects can inherit properties from

different classes and process differently depending on their data type or class, thus

promoting a highly modular and structured management of information. More

detailed documentation on Python (Lutz, 2001) can be found at Python official

website http://www.python.org/

2.2.2 ScrumPy

ScrumPy is a metabolic modelling tool and is collection of programs written in

Python for analysing metabolic models (Poolman, 2006). It is released under

the GNU Public Licence, and is available to download from http://mudshark.

brookes.ac.uk/ScrumPy. It has a number of packages and modules to build

models and perform structural and kinetic analysis. The model descriptions in

ScrumPy are intended to be simple and can readily be understood with basic

knowledge of biochemistry and computing. In addition, the functions in ScrumPy

can easily be modified or extended to suit the purpose of analysis. Pre-written

standard modules or packages from Python’s standard libraries such as SciPy,

NumPy can also be used in conjunction with existing packages in ScrumPy.

The PyoCyc module in ScrumPy helps building the model by extracting infor-

mation from BioCyc PGDBs (more details on Section 3.2.1) and mapping the

annotations such as relationship between genes, proteins, enzymes, reactions and

metabolites. All features in the ScrumPy can either be used interactively on the

command line user interface, build on the standard Python console or in batch

mode, which promotes re-usability of stored programmes. The deliberate absence

of a conventional graphic user interface (GUI) for ScrumPy is to allow users a flex-
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ibility to extend the programs to tailor their needs in specific scientific or research

contexts.

Metabolic models in the ScrumPy are defined using simple, plain-text (ASCII)

files, and are saved with file extension .̈spÿ. The model file usually have four

distinct types of entries:

1. Directives : These are optional instructions to specify how the model de-

scription is intended to be processes. Some commonly used directives are

Structural(), to specify a structural model, External (’metabolite id’), to

specify external metabolite, Include (’FileName’), to load multiple mod-

ules which is a particularly useful feature in ScrumPy to modularise bigger

models (see Figure 3.3).

2. Comment : Is single line statement precceded by hash (#), any text or char-

acters written after the hash are completely disregarded while processing,

but anything before the hash on the line is regarded a part of the model.

3. Reactions : Is mandatory content and describe the properties of reactions in-

cluding their unique identifier, metabolites and corresponding stoichiometric

coefficient on left hand side and right hand side, reaction directionality and

kinetic rate law (replaced by tilde (∼) for structural analysis which speci-

fies a default rate law with mass action kinetics with rate and equilibrium

constants of one)

4. Initialisation : (only in kinetic analysis) to assign numerical values to pa-

rameters and initial metabolite concentrations

Once installed, ScrumPy can simply be run by typing ScrumPy in a shell. Pre-

saved models can then be loaded by creating an instance of a model object with

name of the model being the name of the file present in the same directory that

ScrumPy is started from. If no name is provided, a GUI for selecting a model is

launched. An example of a typical ScrumPy model is shown below:

DeQuote() # remove quotes from identifiers

Structural() # skip kinetic processing

External("WATER", "PROTON") # treat water and protons as external
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R 1: # unique reaction identifier

2A <> 1B # stoichiometry of reaction

~ # end of reaction

Once loaded all the methods of the model object can be seen by dir(m), where

’m’ is the identifier that has been assigned to the model instance. ScrumPy com-

mands for some of the common operations are listed below.

>>> m.sm # returns stoichiometric matrix of the model

>>> m.sm.NullSpace() # returns nullspace of the stoichiometric matrix

>>> m.EnzSubsets() # returns enzyme subsets

>>> m.DeadReactions() # returns all dead reactions

>>> m.ElModes() # computes elementary modes

>>> lp = m.GetLP() # generates basic LP object assigned to lp

>>> ds = DataSets.DataSet() #generates a empty dataset assigned to ds

DataSets is a class of Data package

Most of the common model analysis tasks are available as attributes of the model

and can be explored by typing:

>>> dir(m)

Similarly, all attributes of objects can be listed using the function dir(). For

example dir(lp) will list all functions that can be used with lp instance. Besides all

the built-in attributes of ScrumPy, analysis specific functions can also be written.

ScrumPy modules with functions used for analysis presented in subsequent chap-

ters can be found in Appendix. Following chapters will describe various analysis

using the methodology discussed in this chapter.
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Figure 2.4: The ScrumPy window showing a loaded model assigned to in-
stance m. A nullspace of the model is computed by typing m.sm.NullSpace().
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Chapter 3

Construction of genome scale

metabolic models

3.1 Introduction

The aim of genome scale metabolic modelling is to represent the entire metabolic

capabilities of an organism. A genome scale model (GSM) is typically built from

data extracted from annotated genome databases (Fell et al., 2010). GSMs have

a wide range of applications such as to analyse high throughput experimental

data, investigate metabolic interactions, predicting organism phenotypes, guide

metabolic engineering strategies and direct hypothesis-driven discoveries (Feist

and Palsson, 2008; Oberhardt et al., 2009; Thiele and Palsson, 2010). Current

advances in genomics and genome sequencing have encouraged the reconstruc-

tion of GSMs, which play an important role in the emerging field of metabolic

modelling. The process of construction typically involves the functional annota-

tion of the genome, identification of associated reactions, determination of correct

stoichiometry, assignment of reactions to specific compartments, definition of in-

tercompartmental transporters, definition of biomass composition and estimation

of energy requirements. This chapter first presents an overview of the construction

and validation steps to create a biologically relevant GSM and then describes the

properties of newly constructed GSMs of A. thaliana and C. reinhardtii.
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3.1.1 Approaches for construction of models

Over the last decade, several manual, automatic or combined approaches of con-

structing metabolic models have been used. Manual methods give the maximum

control over the structure of a model and result in better accuracy for their intended

use. However, the process is extremely time consuming, inconvenient and imprac-

tical, especially for large-scale models. Thus, in order to overcome these issues,

various automatic processes have been developed (Schmidt et al., 2015). Nev-

ertheless, completely automatic processes are likely to miss important metabolic

capabilities of the organism or include wrongly identified functionalities (Orth and

Palsson, 2010), and so some level of manual refinement and optimisation remains

necessary (Henry et al., 2010; Thiele and Palsson, 2010).

Reconstruction approaches can also be distinguished as top-down or bottom-up

approaches. The top-down approach involves breaking down of high level struc-

tures to subsequent smaller or more detailed units. A coarse model is first created,

using all available information and is gradually curated to develop a more refined

model (Shahzad and Loor, 2012; Çakr and Khatibipour, 2014). In contrast, in the

bottom-up approach, individual components are first defined in detail and scaled

up by linking them together. Since a high level of detail is provided for smaller

components, in the bottom-up process it is easy to test the models from the be-

ginning allowing a better control over their components and coverage. Moreover,

since living organisms share the same evolutionary history, many fundamental

physiological and biochemical components are common in them and, thus, can

potentially be reused between multiple models.

3.1.2 Inconsistencies in models

With ready availability of genome databases and semi-automated tools, the num-

ber of reconstruction of GSMs for various organisms is increasing. However the

accuracy and predictive power of reconstructed models are limited by inherent

inconsistencies and gaps (Schmidt et al., 2015). These discrepancies are caused

either by the problems in the databases that are used for reconstructions or by

the use of untested method or tools used for reconstructions. Some of the prob-

lems with databases include incomplete or imprecise genome annotation, presence
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of non-functional reactions or non-standard naming of reaction and metabolites.

These problems often entail manual re-encoding of data during the model recon-

struction process, which is time-consuming and error-prone. On the other hand,

lack of detailed documentation on the published models makes it difficult to re-

produce reported results. In some cases the old methods and tools are no longer

supported and are not available thus the data or tool become unusable and the

information is lost.

Recent development in reconstruction process

The metabolic modelling community is now coming together to design new ap-

proach to address many such issues(Fell et al., 2010; Henry et al., 2010; Soh and

Hatzimanikatis, 2010). Efforts are being made to unify the format of genome anno-

tations, available from various databases, so that the biochemical information can

be created and stored systematically. A method named model SEED is a useful

method for detection and corrections of gaps from the models reconstructed from

automatic and or semi-automatic processes. It also describes an automatic model

reconstruction process, starting from a new genome sequence and finishing on a

functional genome-scale metabolic model (Kumar et al., 2007; Henry et al., 2010).

Similarly, Thiele and Palsson (2010) published a protocol to generate large scale

metabolic models using publicly available genome annotations. More recently, a

tool named COMMGEN has been developed to automatically identify inconsisten-

cies between coexisting models and to semi-automatically resolve them (van Heck

et al., 2016). The BiGG (Biochemical, Genetic and Genomic) (King et al., 2016)

knowledge base is a collection of more then 75 manually curated genome-scale

metabolic network reconstructions, which use a set of standarised identifiers called

BiGG IDs. Genes in these models are mapped to NCBI genome annotations and

metabolites are linked to databases such as KEGG or PubChem. Their web based

service also provides an application interface to access and analyse the models.

Similarly, MetaNetX (Moretti et al., 2016) is a storehouse of GSMs from different

resources imported into a common name-space of chemical compounds, reactions,

cellular compartments and proteins. The web based interface of MetaNetX pro-

vides a platform to experiment with the existing models or to compare them with

new models and analyse them using flux balance analysis. The models constructed

in this thesis use the annotations from the BioCyc database (discussed in details
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below) for consistency.

3.1.3 GSMs of A. thaliana and C. reinhardtii

GSM of A. thaliana

Creating metabolic networks to represent plant species is increasingly popular and

some metabolic models exists for a few of the plant species. Specially due to

the availability of detailed genome annotation of the model plant A. thaliana first

published in 2000 (Arabidopsis Genome Initiative, 2000), there has been a growing

interest in reconstructing its genome scale metabolic model in recent years. There

are in total 8 published models for A. thaliana to date (Poolman et al., 2009;

Radrich et al., 2010; de Oliveira Dal’Molin et al., 2010; Saha et al., 2011; Mintz-

Oron et al., 2011; Cheung et al., 2013; Arnold and Nikoloski, 2014; Seaver et al.,

2014). Although some of these models uniquely capture specific phenotypes of the

organism, all of them vary in their biochemical representation, genome annotations

and algorithms they use to build the models. The first GSM of A. thaliana was

published by Poolman et al. (2009) and represented a heterotrophic plant cell. The

model was based on annotations from AraCyc database version 4.5 (Mueller et al.,

2003) and covered a network of 1406 reactions with 1253 metabolites. AraGEM

(de Oliveira Dal’Molin et al., 2010), which included both photosynthetic and het-

erotrophic metabolism of A. thaliana contains 1526 reactions in 5 different com-

partments. Both the models, presented by Radrich et al. (2010) and Mintz-Oron

et al. (2011), were based on annotations obtained from KEGG. However, a unique

feature of model presented by Mintz-Oron et al. (2011), was that it was a tissue-

specific model and the information for tissue specificity and compartmentalisation

were computed automatically using a network based approach. Among all the

models discussed above, three of them, (de Oliveira Dal’Molin et al., 2010; Saha

et al., 2011; Cheung et al., 2013) contain the same 5 sub-cellular localisations but

the model presented by (Cheung et al., 2013) has a larger coverage of the metabolic

network with 2769 reactions and 2618 metabolites.

GSM of C. reinhardtii

Similarly, more than 6 GSMs for C. reinhardtii have been published (Boyle and

Morgan, 2009; Manichaikul et al., 2009; Chang et al., 2011; de Oliveira Dal’Molin
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et al., 2011; Chapman et al., 2015; Imam et al., 2015) to date. The first ever algal

metabolic model by Boyle and Morgan consists of 484 reactions and 458 metabo-

lites in 3 intracellular compartments. Later, another model named AlgaGEM

(de Oliveira Dal’Molin et al., 2011) was published which was more inclusive than

the first with 1725 unique reactions and 1862 metabolites and included 2249 gene

enzyme reaction associations. This model had 4 compartments and was based

on a previously published A. thaliana model from the same group (de Oliveira

Dal’Molin et al., 2010). The model covered the fermentative pathway for produc-

tion of H2 and fermentative reactions to produce glycolate and acetate. The model

iRC1080 (Chang et al., 2011) was extensively compartmentalised into 10 different

compartments where the chloroplast alone accounted for more than 30% of the

total 2109 reactions in the model. Although it is bigger in size and includes de-

tailed compartmentation it has many unnecessary reactions like sodium mediated

transporters and reactions involving flavoprotein (FAD) complex, which are not

known to be present in algae. A more comprehensive model, iCre1355, published

more recently (Imam et al., 2015), includes a broad range of metabolic functions

in different compartments with 2394 reactions and 1133 metabolites.

3.2 Methods - Construction and Validation

of GSM

3.2.1 Resources for genome annotations

High quality and reliable genome annotation is the primary requirement for the

construction of GSMs. Fully sequenced genomes are readily available from various

databases, however, functional assignment of the sequenced genome is not easy.

Specifically from the viewpoint of metabolic reconstruction, annotation of genes

encoding metabolic enzymes is of most significance, notably the stoichiometry of

the reactions catalyzed by the enzyme and, where available, the reversibility of the

reaction. It must be pointed out that genome annotation itself is a bioinformat-

ics problem and does not form a part of the metabolic model (Hartman, 2013).

The databases that have been used for reconstruction of GSMs in this study are

discussed in more detail below.
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BioCyc

BioCyc is a compendium of Pathway Genome Databases (PGDBs) for more then

7000 sequenced organisms and is a useful resource for the reconstruction of GSMs.

It relies on a frame-based representation scheme where data is represented as frame

and slots. A general class and single object such as pathways, gene, enzyme, re-

actions etc are represented by frames and properties associated with such objects

are represented by slots. Frames are identified by a unique identifier, thus allowing

the introduction of relationship between the different instances. The PGDBs are

generated by a software package called Pathway Tools (Karp et al., 2011), that

predicts the metabolic pathways and missing enzymes in a metabolic network.

They are then classified into three tiers based on the amount of manual curation

and updates they receive. Factors such as literature evidence and experimental

elucidations of each annotation are taken into account for this purpose. Tier 1

PGDBs, such as AraCyc, contain detailed entries of metabolites reactions and

pathways based on its genome annotations and receive at least a year of curation

by scientists. Tier 2 PGDBs, such as ChalmyCyc, are generated by the Path-

way Tools, which predicts their metabolic pathways, and receive some degree of

literature-based curation. Tier 3 PGDBs are generated solely from the Pathway

Tools and do not receive any manual curation.

AraCyc

AraCyc is the A. thaliana specific PGDB (Mueller et al., 2003) and is maintained in

collaboration with TAIR (The Arabidopsis Information Resource). The structures

for the genes included in AraCyc are based on TAIR genome annotations. The

majority of the pathways found in AraCyc have some measure of experimental

backup, but additional, computationally-predicted, pathways are also included to

maximize the hypothesis-generating power of the database. All manually added

pathways are individually reviewed by curators who add comments concerning

their potential validity and the sources of the information. Additional pathways

are also imported from MetaCyc (Caspi et al., 2006, 2016), based on curator

inference. Additional gene ontology and plant ontology functional annotations

derived from experimental data and computational predictions are also listed at

the TAIR gene pages which are categorized using a different set of evidence codes.

The AraCyc PGDB is updated on a regular basis with each new release containing
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Table 3.1: Content statistics of different versions of AraCyc database that
were used to reconstruct different updates of A. thaliana model discussed in
this chapter. Data referenced from PMN archives.

Release Reactions Metabolites Pathways Enzyme Citations
v4.5 1723 1956 288 6214 2279
v9.0 3320 3320 502 7100 3210
v11.5 3490 2613 597 9041 4798
V13.0 3635 2802 620 9995 5242

Table 3.2: Content statistics of different versions of ChlamyCyc. The version
v3.5 was used for construction of GSM of C. reinhardtii used in this thesis.

Release Reactions Metabolites Pathways Enzyme Citations
v2.0 1688 1130 283 2157 2036
v3.5 2263 1514 349 3330 2708

additional annotations and references to experimental evidence. Table 3.1 presents

the details of the updates on number of reactions, metabolites, pathway, enzymes

and citations included in past four release of the AraCyc database.

ChlamyCyc

ChlamyCyc is a result of combination of published genome sequence of C. rein-

hardtii bioinformatics predictions and experimental data from omics experiments

(May et al., 2009). The database provides a repository to enable and assist sys-

tematic studies of cellular processes in C. reinhardtii. Table 3.2 shows the content

statistics of latest release of C. reinhardtii.

KEGG

KEGG is another well established database used for reconstruction and adopts

its own unique identifiers for reactions and metabolites, providing comprehensive

descriptions of cellular metabolism and functions (Ogata H et al., 1999). This is

a resource for understanding high-level functions and utilities of a biological cell

especially for large-scale molecular datasets generated by genome sequencing and

other high-throughput experimental technologies. As of February 2017, KEGG

has a collection of 10,438 reactions and 17,901 metabolites for 20,946,404 genes of

different organisms.
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BRENDA

BRENDA is a collection of enzyme functional and property data, the majority

of which is extracted from primary literature. The contents cover information on

function, structure, occurrence, preparation and application of enzymes as well

as properties of mutants and engineered variants. It includes more then 83,000

enzymes, defined by International Union of Biochemistry and Molecular Biol-

ogy (IUBMB) naming convention, taking references from 137,000 literature items

(Placzek et al., 2016). The latest updates on the web interface of the database

give an overview on biochemical processes and helps to visualise enzyme, ligand

and organism information from the biochemical viewpoint.

The three databases discussed here, however differ in the annotations of the re-

actions and the amount of available data. Detailed statistics of the number of

reactions present in each of these databases are presented in Figure 3.1

KEGG

BRENDA

MetaCyc

46526

914 1216

7260
827

3275

4784

Figure 3.1: Distribution of unique reactions between BRENDA, KEGG and
MetaCyc. These data were taken from (Placzek et al., 2016).
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Subcellular localisation databases

Eukaryotic organisms have many cellular compartments, In order to completely

understand the metabolic interactions within these compartment each components

needs to be represented and studied separately. The information about the com-

partmentation can be taken from subcellular localisation databases. For example

the Arabidopsis Subcellular Database (SUBA) (Heazlewood et al., 2007; Hooper

et al., 2017) is a central resource for Arabidopsis protein subcellular location data.

Similarly, PredAlgo (Tardif et al., 2012) can be used to predict subcellular location

of Chlamydomonas enzymes.

3.2.2 Manually added reactions

To reduce the complexity of the model and avoid any inconsistency arising from the

reactions involving individual lipid molecules, such reactions were removed from

the model to be replaced with a generic lumped reaction that converts acetyl-

CoA, NADPH and ATP into palmitate, as a generic fatty acid, as in Poolman

et al. (2009, 2013). The reactions are written as:

14 NADPH + 8 ACETYL-COA + 7 ATP -> FattyAcid + 7 Pi +

7 ADP + 14 NADP + 8 CO-A

The synthesis of triacyl glyceride was then defined in terms of synthesis of

palmitate as :

3 FattyAcid + 3 ATP + 1 GLYCEROL-3P -> 1 TAG + 3 AMP + 3PPI + 1 Pi

Similarly, to reduce the complexity of representing the chloroplast electron

transport chain, two lumped reactions representing the cyclic and non-cyclic pho-

tophosphorylation (Poolman et al., 2013; Cheung et al., 2013, 2014) were included

in the model as:

Light Cyclic Rxn:

7 Photon + 3 ADP + 3 Pi -> 3 WATER + 3 ATP

~

Light NonCyclic Rxn:

14 WATER + 56 Photon + 14 NADP + 18 ADP + 18 Pi ->
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7 O 2 + 14 PROTON+ 18 ATP + 14 NADPH

~

The five complexes used to represent oxidative phosphorylation as represented

in Figure 1.6, are shown below. Since protons are considered as external in the

model, the inter-membrane translocation proton used to drive the synthesis of ATP

was represented as an internal metabolite Pumped-PROTON In total 4 Pumped-

PROTONs are required to phosphorylate 1 ADP to ATP. All the reactions are

localised in the mitochondria, and, hence the name of reactions and metabolites

are suffixed Mito, in the model.

"Complex-I_Mito":

"UBIQUINONE_Mito" + "NADH_Mito" + 5 "PROTON_Mito" ->

"NAD_Mito" + "UBIQUINOL_Mito" + 4 "Pumped-PROTON_Mito"

~

"Complex-II_Mito":

"UBIQUINONE_Mito" + "SUC_Mito" -> "FUM_Mito" + "UBIQUINOL_Mito"

~

"Complex-III":

"UBIQUINOL_Mito" + 2 "Cytochromes-C-Oxidized_Mito" + 2 "PROTON_Mito" ->

"UBIQUINONE_Mito" + 4 "Pumped-PROTON_Mito" + 2 "Cytochromes-C-Reduced_Mito"

~

"Complex-IV_Mito":

4 "Cytochromes-C-Reduced_Mito" + "OXYGEN-MOLECULE_Mito" + 8 "PROTON_Mito" ->

2 "WATER_Mito" + 4 "Pumped-PROTON_Mito" + 4 "Cytochromes-C-Oxidized_Mito"

~

"Complex-V_Mito":

4 "Pumped-PROTON_Mito" + "ADP_Mito" + "Pi_Mito" ->

"ATP_Mito" + 4 "PROTON_Mito"

~
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Figure 3.2: Pipeline of construction and validation of GSMs The process
shown in blue is the step for construction and that in purple is for the curation
which goes through a series of iterations before coming up with a updated
model.

3.2.3 Construction of GSMs

This section will discuss in details the reconstruction work flow of the GSMs based

on the standard practices in the Cell Systems Modelling Group. The approach of

reconstruction involves both automatic and manual approaches with an intention

of creating more accurate models in a reasonable time. Iterative processes of

curation and validation are followed until a biologically suitable model is achieved.

Figure 3.2 shows the connection between different components of construction and

validation, each of which are discussed in detail below.

Extracting information from the database

The construction process begins by creating a draft model using annotations from

organism specific BioCyc database. The PyoCyc module from the ScrumPy is used

to extract the information from the database. As shown in the example below,

the database entry for each reaction contains information about their gene associ-
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ation, EC numbers, reaction direction, synonyms or common names, type of the

molecule, pathways, enzymatic reaction etc. However, only specific details such as

unique id of the reaction, metabolites consumed and produced, their stoichiome-

tries and the directionality of the reaction are necessary to define a reaction. Other

specifications are referenced to develop additional understanding of the reaction

during the analysis of the model, but do not form a part of the model. Annotations

for the SBPase reaction are presented here to illustrate how they are stored in the

BioCyc database.

UNIQUE-ID - SEDOHEPTULOSE-BISPHOSPHATASE-RXN

EC-NUMBER - EC-3.1.3.37

REACTION-DIRECTION - LEFT-TO-RIGHT

PHYSIOLOGICALLY-RELEVANT? - T

SYNONYMS - Sedoheptulose-1,7-bisphosphatase

IN-PATHWAY - CALVIN-PWY

ENZYMATIC-REACTION - ENZRXNQT-9516

TYPES - Small-Molecule-Reactions

TYPES - Chemical-Reactions

LEFT - WATER

^COEFFICIENT - -1

LEFT - D-SEDOHEPTULOSE-1-7-P2

^COEFFICIENT - -1

RIGHT - |Pi|

^COEFFICIENT - 1

RIGHT - D-SEDOHEPTULOSE-7-P

^COEFFICIENT - 1

The unique identifier of each reaction is stored in the slot UNIQUE-ID. In a

case where specific biological name of a reaction is not defined, a unique reaction

number such as RXN-964 is assigned. The metabolites are taken from the slot

LEFT and RIGHT which represents the the metabolite on left hand side or right

hand side of the reaction depending upon their direction, which is stocked from

the slot REACTION-DIRECTION. For a reaction defined as LEFT-TO-RIGHT

the metabolites in LEFT are the substrate and the metabolites in RIGHT are

its product. The values stored in the slot COEFFICIENT is the stoichiometric

coefficient of the metabolite in the reactions. After this information is read from
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the database, the reactions are represented in a format readable by the ScrumPy.

The SBPase reaction shown in the example above will appear in the model as

follows:

"SEDOHEPTULOSE-BISPHOSPHATASE-RXN_Plas":

1 "D-SEDOHEPTULOSE-1-7-P2_Plas" + 1 "WATER_Plas" ->

1 "Pi_Plas" + 1 "D-SEDOHEPTULOSE-7-P_Plas"

~

The symbol ∼ indicates the end of the information for this reaction and can

be substituted with other kinetic information for dynamic modelling.

Assigning reaction directionality

The directionality of most reactions stored in the PGDBs are based on biological

evidence, but for some others it is computed by the Pathway Tool. Thus the

direction assigned for a reaction in the database does not necessarily imply the

physiological directionality of that reaction. Reactions in the BioCyc database are

defined in seven different ways, based on whether or not the reaction occurs in

a specified direction in a physiological setting. These options and how they are

interpreted in the model is shown in the Table 3.3.

Table 3.3: Direction for each reaction as defined in the BioCyc database
annotations and their interpretation in the model respectively. Reactions
defined as RIGHT-TO-LEFT were regarded as irreversible to preclude in-
consistent enzyme subsets.

Database annotations Model
IRREVERSIBLE-LEFT-TO-RIGHT →
IRREVERSIBLE-RIGHT-TO-LEFT ←
PHYSIOL-LEFT-TO-RIGHT →
PHYSIOL-RIGHT-TO-LEFT ←
LEFT-TO-RIGHT ↔
RIGHT-TO-LEFT ←
REVERSIBLE ↔
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3.2.4 Handling badly defined metabolites and reactions

The metabolites extracted from the database are not always suitable to be used

directly in the model. Multiple changes are incorporated into the draft model gen-

erated automatically from the database, including the change in names of metabo-

lites and reactions, correcting the stoichiometry, addition and removal of metabo-

lites and reactions that are not suitable for the model etc. Issues that need to be

addressed in order to correctly use them in the model are presented here:

Removing bad metabolites

The metabolites used by the reactions, as obtained from the database, are de-

fined either as a compound or a class. The metabolites defined as class such as

Very-Long-Chain-Alcohols, Pimeloyl-ACPs, trans-2-cis-5-dienoyl-CoA do not have

a specific empirical formula. The presence of these compounds, could cause po-

tential problems during the analysis of the model by causing stoichiometric imbal-

ances. Similarly, some metabolites defined as compound includes metabolites with

undefined functional groups such as alkyl group in their formula. Such metabolites

cannot be assigned a specific empirical formula. All such metabolites are removed

from the model except when they are deemed necessary for specific metabolic func-

tion. For example reactions involved with ferredoxin and thioredoxin are required

in the chlorophyll synthesis pathway and are included in the model although they

do not have a defined atomic structure.

Sometimes, multiple names are assigned to the same metabolite. For exam-

ple, D-glucose-6-phosphate, GLC-6-P, ALPHA-GLC-6-P all represent glucose 6-

phosphate and have the same empirical formula. Such a conflict is resolved by

choosing one convenient name to substitute for the rest.

In some cases, the cofactors NADP and NADPH are written as NAD-P-OR-NOP

and NADH-P-OR-NOP in the BioCyc database. This is to indicate that the re-

action could use either NADP or NAD. In this case, the reaction is split into

two using the alternate pair of cofactors each time and suffixed accordingly. For

example the reaction using NAD is suffixed as NAD and so on.
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Removing Isoforms

Some of the enzymes have multiple forms (isozymes) differing structurally in the

amino acid sequence but catalysing the same chemical reaction. They are present

with different names hence appear in the model as separate reactions. Such reac-

tions are identified and removed to avoid duplication. Two isozymes for the ATP

hydrolysis (ATPase) reaction are shown below for example.

"RXN-11109":

"ATP" + "WATER" <> "PROTON" + "ADP" + "Pi"

~

"3.6.3.6-RXN":

"ATP" + "WATER" + "PROTON" <> "PROTON" + "ADP" + "Pi"

~

Removing redox half reactions

Reactions which involve two or more redox-half-pairs and contain explicit electrons,

which cannot occur freely, are called redox-half-reactions. In the database, slots

that are similar to pathways refer to sub-reactions. Where possible only the main

reaction is included in the model and related sub-reactions are removed.

3.2.5 Definition of inputs and outputs

A model created from a database contains only the internal reactions, but for it

to operate as a functional unit, external metabolites and their transporters need

to be defined. Generally, sources of energy, carbon and nutrients are required

as the inputs to a model, while biomass components are defined as the outputs.

Depending upon the context of the study, photons, starch or acetate can be used

as sources of energy or carbon. Additional sources of carbon can include glucose,

sucrose or CO2. Inorganic ions such as NO3, NH4, SO4 and Pi are used as sources

of nutrients in models. Diffusion of O2 and CO2 are also represented as separate

reactions. Additionally, protons and water are also considered external as they

can enter or exit from the metabolic system as necessary (Poolman et al., 2009).
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Defining biomass composition

In order to describe a growing cell is it necessary to define its molecular com-

position ie. protein (amino acid), carbohydrates (sucrose, starch), nucleotides

(RNA, DNA), lipid (fatty acid), cell wall components (lignin, cellulose, xylan),

carotenoids and chlorophyll are used as biomass. The composition of each compo-

nent is determined either from in-vivo experiments or adopted from published data

in literature where relevant and available. Each of the components are assumed

to be transported by a single reaction and assigned a flux proportional to their

experimentally measured composition. To make them easily identifiable during

the analysis process, the names of these reactions are suffixed as bm tx in the

models.

3.2.6 Atomic Balance

Every reaction in the model is required to comply with the the law of mass conser-

vation ie. the metabolites in the left hand side of a reaction should be atomically

balanced with the metabolites in the right hand side. For this the elemental com-

position, in terms of carbon, nitrogen, phosphorous and sulfur of the substrates

are compared with those of the products for each reaction. Any discrepancies

identified are corrected manually, or if they cannot be balanced are removed from

the model. Some of the reactions involving metabolites belonging to the class cat-

egories, such as starch, xylan, cellulose, which are necessary for various metabolic

functions in the model, are checked manually for their atomic balance. Usually

starch and cellulose are defined to have one hexose subunit, and xylan one pentose

subunit.

3.2.7 Identifying energetically inconsistent energy pro-

ducing cycles

All metabolic models should comply with the law of energy conservation, which

implies that energy components such as ATP, NADPH, NADH cannot be pro-

duced without some external source of energy in the form of oxidisable carbon or

photons. Lack of compliance can arise mainly due to incorrectly defined reaction

reversibilities in the model such that a combination of two or more reactions can

operate as an internal cycle generating energy components. These cycles have to
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be identified and corrected where possible, or removed.

For this, a linear programming problem was defined as shown in Equation 3.2.1

and the ATPase reaction was constrained to carry a positive flux, ie. in the direc-

tion of consumption of ATP. All other inputs and outputs are temporarily blocked.

A feasible solution to such a problem indicates that the reactions in the solution

set together can produce spurious energy. Thus the cycle need to be corrected by

changing the directionality of appropriate reactions in the solution set. Each of the

reactions is checked and corrected manually with reference to literature evidence

or other databases such as KEGG and BRENDA. Likewise, the cycles producing

spurious NADH and NADPH are identified by using, a temporary, generic NADH

and NADPH oxidase reactions respectively.

minimise : v

subject to


Nv = 0

vtx = 0

vATPase = 1

(3.2.1)

The objective is to minimise the sum of the total reaction flux, v, subject to the

following constraints:

• Nv = 0 defines steady-state, v is the vector of all fluxes

• vtx = 0 indicates zero flux through external transport reactions

• vATPase indicates positive flux in ATPase reaction. Similarly, NADPH and

NADH are assigned a positive flux, when energy balance in terms of these

reductants is to be checked.

3.2.8 Identifying stoichiometric inconsistencies

As discussed in the section 2.1.4, the left null space of the stoichiometry matrix can

be used to identify the unconserved metabolites in the model. These arise where

a metabolite has been assigned a composition in one reaction that is consistent

in the reaction but is different from the composition in another reaction. This

potentially leads to a leak, or appearance of matter violating mass conservation.

An algorithm based on mixed-integer linear programming (Gevorgyan et al., 2008)

was used in ScrumPy to identify unconserved metabolites in the model.
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3.2.9 Identifying missing reactions

Identifying the missing reactions is key to obtaining a fully functional model. The

process involves both manual and automatic steps. If some obvious reactions are

missing from important pathways they can be identified from a manual inspection.

Disconnected parts of metabolism can also be identified by computing orphan and

dead-end metabolites (see section2.1.4). In other cases when a biomass component

cannot be produced, its biosynthetic pathway is backtracked to identify missing

reactions. New reactions identified as missing are added in the model with refer-

ence to published literature or a reliable database. However, it should be noted

that adding a new reaction or reactions in the model can bring about new incon-

sistencies. Thus all the checks should be repeated every time a change is made to

the model.

3.2.10 Ability of the model to account for growth

The model is checked for its ability to produce biomass components, first individu-

ally, and then in combination, to establish that the model can represent the growth

of the organism. Equation 3.2.2 is used to test individual production of biomass.

The negative value in the biomass transporter indicates that it is exported from

the system.

minimise : v

subject to

{
Nv = 0

vi..j = −1

(3.2.2)

• vi..j = −1 indicates a negative flux in individual biomass transporters indi-

cating its export from the system.

Equation 3.2.2 is modified as follows to test the production of all biomass

components in combination.

minimise : v

subject to

{
Nv = 0

vi..j = ti..j

(3.2.3)

• where vi..j = ti..j indicates proportional flux through all biomass trans-

porters, consistent with biomass composition.
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3.3 Results

3.3.1 GSM of A. thaliana

General properties

The GSM of A. thaliana was constructed from the AraCyc database. The direc-

tionality of all reactions in the model was primarily based on information from

AraCyc subject to manual curation with cross-reference to KEGG and BRENDA

where necessary. The information about compartmental localisation and intercom-

partmental transporters were obtained from Cheung et al. (2013). The following

corrections were made to the model once the draft model was created.

• 537 reactions have their directionality changed, either to correct inconsistent

enzyme subsets (see section 2.1.4) or spurious energy producing cycles.

• 1228 bad metabolites were removed from the model.

• 362 reactions were removed during the process of curation to remove isozymes,

energetically inconsistent cycles and to correct inconsistent enzyme subsets.

These reactions also include 14 pairs of sub-reactions.

• 34 substitutions were made to unify the name of metabolites with the same

empirical formula.

• 26 extra reactions were added for gap filling.

Further, the following checks were made on the model that it :

1. Can produce all biomass components, individually and in combination, un-

der phototrophic and heterotrophic conditions in an experimentally mea-

sured proportion.

2. Complies with the law of mass conservation, which means all the reaction

in the model are stoichiometrically balanced with respect to C,N, S and P

and also is free from unconserved internal metabolites.

3. Is energetically consistent and thus ATP, NADPH or NADH cannot be pro-

duced or consumed without some external source of energy such as oxidisable

substrates or photon.
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4. Is free from inconsistent enzyme subsets.

After completing the curation and validation process, the final model consists

of 2588 reactions, of which 234 are transporters (55 biomass transporters and 179

intercompartmental transporters) and 2481 metabolites, distributed in 5 different

compartments chloroplast, mitochondria, plastid, peroxisome and vacuole. Each

compartment, associated transporters and extra reactions added to the model were

written as separate modules and connected to the top level module as represented

in Figure 3.3.

All the corrections, list of metabolites and reactions removed, all substitutions

made during the curation process are presented as Corrections.spy, Unwanted.spy

and Substitutes.spy respectively in the Appendix C. More detailed discussion

about the photosynthetic properties of model and its responses to different light

conditions is presented in Chapter 4.

Comparison with previous models

A statistical comparison was made between the current version of the model and

its predecessors (Poolman et al., 2009; Cheung et al., 2013). Table 3.5 shows the

details of the overall reactions, metabolites, gene association and dead reactions

in 4 versions of the model constructed form subsequent updates of AraCyc.

It is clear from Table 3.5 that updates in source database affects the size of the

resulting model. Thus to investigate if such changes also affect biochemical proper-

ties of the model, all four models were constrained to produce same set of biomass

components in exactly same proportions, using Equation 3.2.2. The number of

reactions in the resulting solution set for each model is presented in Table 3.6.

The total number of reactions required to produce the biomass components varied

in each model. Nevertheless, a consistent feature observed in all the models is

that only a small fraction (12-15 %) of reactions are required to produce biomass

components in an experimentally measured proportions. One of the reason for the

difference in number of reactions in the resulting solution is the use of different set

of transporters in all four models. This resulted in rewiring of networks in order to

produce the biomass components. Another reason is the updates in irreversibility
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(AraMeta)
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Figure 3.3: Modular structure of components of the GSM of A. thaliana.
The top level module describes the type of model as Structural and includes
the ATPase reaction to represent energy maintenance cost, a list of external
metabolites and subsequently imports the rest of the modules included in the
model. Each modules has compartment specific reactions suffixed with the
first 4 letter of its respective sub-cellular localisation. All associated modules
with transporters and extra reactions follow the same pattern.

Table 3.5: General statistics of four models built from different versions of
AraCyc database. The number of reactions associated with respective gene
is under-determined in v11.5 and v13.0 because (a) manually added lumped
reactions has not been accounted for (b) mapping is based solely on the
annotations available from AraCyc.

Model Reactions Metabolites Reactions with gene Dead Reactions
v4.5(Poolman) 1408 1250 N/R 621
v9.0(Cheung) 2769 2739 1860 1204
v11.5(K1) 2606 2480 1807 1247
v13.0(K2) 2613 2499 1827 1269
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Table 3.6: Statistical comparison of unique reactions required to produce
same set of biomass components by four models built from different releases
of the AraCyc database.

Model Number of reactions to produce biomass
v4.5(Poolman) 232
v9.0(Cheung) 353
v11.5(K1) 359
v13.0(K2) 408

of reactions (resulted from both database updates and curation process) in K1

and K2 models, compartmental localisation (Poolman model has only 2 major

compartments), updates in transporters (K1 and K2 models excludes seemingly

unnecessary transporters that were included in Cheung model). However, it is im-

portant to note that despite the difference in total number of reactions, all models

showed similar biochemical properties. Reactions from central carbon metabolism

including Calvin cycle, glycolysis and TCA cycle were preserved in solution set of

all four models.

These results suggest that the regular updates and improvements in the source

database has an influence on the structure and hence the prediction capacity of

the model. Further the analysis has emphasised that, regardless of the updates in

the models, their central carbon metabolism remains unchanged which is impor-

tant component to support synthesis of biomass and peripheral metabolism.

Some of the major improvements and updates in the current version of the model

are listed below.

1. The model is constructed based on a more recent release of AraCyc database,

version 13.0, with more genome annotations, covering 597 pathways with

9041 enzymes as compared to 502 pathways and 7100 enzymes in version

9.0. It includes large coverage of metabolic networks, hence gives more

possibility of developing newer insight about plant metabolic behaviors.

2. Information about the reaction directions was taken solely from the AraCyc

database in the earlier models (Poolman et al., 2009; Cheung et al., 2013)

But they have been validated and corrected with reference to other databases

like KEGG and BRENDA in the current model.
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3. In total 14 sub-reactions were identified and removed. Both Poolman and

Cheung models include these such sub-reactions in the model.

4. The updated model can simulate photosynthetic metabolism with greater

details, with inclusion of updated light reactions.

3.3.2 GSM of C. reinhardtii

General properties of the GSM of C. reinhardtii

The GSM of C. reinhardtii was constructed using annotations in the ChlamyCyc

v3.5 database. Information about the sub-cellular localisation and intercompart-

mental transporters were taken from Chang et al. (2011). The following corrections

were made after the draft model was created:

1. 324 reactions were corrected for their directionality either to correct enzyme

subset or energy conservation inconsistencies.

2. 1090 bad metabolites were removed from the model.

3. 285 reactions were removed during the process of curation to remove isozymes,

break the spurious energy consuming cycles and correct the inconsistent en-

zyme subsets. These reactions also include 9 pairs of sub-reactions.

4. 43 substitutions were made in different names of metabolites.

5. 21 extra reactions were added for gap filling.

Further, the model also satisfies all the validation steps enumerated in Sec-

tion 3.3.1. The resulting model consists of 1858 reactions and 1931 metabolites

in 4 compartments cytosol, chloroplast, mitochondria and peroxisome. There are

73 biomass transporters, representing export of biomass component outside the

cell and 269 intercompartmental transporters. Between 339 to 341 reactions were

required to produce biomass components, depending upon the experimental condi-

tion. In total 1152 reactions from the model can be associated with corresponding

genes based on annotations in ChlamyCyc.
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3.4 Determination of biomass composition of

Chlamydomonas

The motivation for the measurement of biomass components under mixotrophic

condition was based on the understanding, combined form personal communication

with experimental partners in the AccliPhot consortium and published literature

(Boyle and Morgan, 2009; Johnson and Alric, 2013; Johnson et al., 2014) that the

C. reinhardtii grown under mixotrophic condition on acetate media produces more

biomass compared to its phototrophic growth. Data collected from this measure-

ment have tried to address this question. Further, the biomass data was integrated

in the model and its metabolic properties were compared between phototrophic

and mixotrophic growth, and will be presented in Chapter 4.

3.4.1 Method and results

Biomass composition for the C. reinhardtii model under mixotrophic condition was

determined using a torus photobioreactor (PBR) (Takache et al., 2012). These

measurements complement the experimental data under phototrophic condition

that was already available in the group of Prof. Guillaume Cogne, the AccliPhot

collaborating partner at the Process Engineering for Environment and Food (GE-

PEA) Laboratory, University of Nantes, France. At the date this experiment

was performed, no published data was available on biomass composition under

mixotrophic conditions for C. reinhardtii measured from a photobioreactor setup.

The PBR setup that was used to grow the C. reinhardtii under mixotrophic con-

ditions is shown in Figure 3.4. A medium rich in acetate and other nutrients was

used to support growth, the detailed composition of which is presented in Table

3.7. A specially designed frame with LEDs was used to provide continuous il-

lumination. Various electrodes were fitted to constantly monitor the level of pH,

biomass, CO2 and O2. The pH was maintained at 7.5 by continuous supply of CO2

and the temperature was maintained between 23-24 ◦C. The amount of acetate

consumed and the biomass produced (total dry weight), was measured on a daily

basis. Other measurements, such as total cell count, pigment contents, average cell

size, were also measured daily while the compositions of starch, glucose, lipid and
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Figure 3.4: Top and side view of the photobioreactor setup. The reactor
is fitted with different electrodes to continuously monitor the pH, biomass,
level of CO2 and O2. Uniformly fitted led bulbs were used for continuous
illumination at 200 uE. A constant flow of liquid medium was maintained by
rotating an impeller, thus creating uniform exposure of algae to the light.

overall elemental composition were measured when the final culture was harvested

after 6 days of growth.

Flashing light effect

The movement of fluid between the photic zone, the front surface of the PBR

directly exposed to light from LEDs, and the dark zone, the rear surface, was

maintained by continuously stirring the medium with a impeller. Such movement

of the medium in a PBR is known to create a flashing light effect (Terry, 1986),

which has been proven experimentally to be one of the most efficient light regimes

in microalgae cultivation, by improving photosynthesis and thus the growth of

algae (Grobbelaar, 1991; Liao et al., 2014; Abu-Ghosh et al., 2016). The movement

of culture is specially important when the PBR operates in high cell densities such

as in the case of mixotrophic growth.
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Table 3.7: The composition for 1 liter of the mixotrophic growth medium of
C. reinhardtii. The compounds were mixed in the order presented above and
autoclaved before inoculating with the culture. Final pH of the medium was
maintained at 7.5. NH4Cl serves as the source of nitrogen, MgSO4.7H20 is the
source of magnesium, KH2PO4 is acidic source of phosphate while K2HPO4

is also the source of phosphate and is basic. CaCl2 is source of calcium and
acetate is obtained from CH3COONa .

Coumpounds Amount

NH4Cl 1.2 g
MgSO4.7H20 0.3 g
KH2PO4 0.092 g
K2HPO4 0.4 g
CaCl2.2H2O 0.1 g
CH3COONa 4.2435 g
Hutner sol 1 ml

3.4.2 Comparison of biomass composition

The comparison of percentage fraction of each group of biomass components under

phototrophic and mixotrophic conditions is shown in Figure 3.5. The proportion of

carbohydrates is about 4% higher under mixotrophic conditions, while the propor-

tion of lipid and protein were about 2-3% higher under phototrophic conditions.

Although this difference in composition was minimal, a notable difference was ob-

served in relative growth rate under these two conditions. The growth rate under

mixotrophic conditions was 0.0957 hr−1 while the growth rate under phototrophic

condition was 0.040 hr−1.

The composition of each biomass component was obtained in grams % w/w. The

proportion for each components were then calculated as described by Cogne et al.

(2011). Amount for individual component was calculated using the formula shown

below.

BMc =
MF

100
∗MW ∗ 1000 ∗D
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Phototrophic Mixotrophic

Figure 3.5: Comparison of biomass composition under phototrophic and
mixotrophic conditions in C. reinhardtii. The measurements were made on
culture grown on photobioreactor set up and the normalised molar fraction
of each components are considered for comparison.

Where BMc is the composition for individual biomass component, MF is molar

fraction, MW is molecular weight and D is the dilution rate or the growth rate.

The resulting amount is in the unit mole kg−1hr−1

3.4.3 Calculating photon stoichiometry

The amount of light exposed to the surface of PBR is known as incident light.

Only a fraction of this is used by the organism in photochemistry and is known

as stoichiometric photon. Is is dependent upon factors such as cell count per

surface area, size and shape of the cells, specific absorption rate, quantum yield of

photosynthesis and so on. For the purpose of this thesis, the value was calculated

by using a mathematical method developed at the GEPEA (Takache et al., 2012;

Soulies et al., 2016). The stoichiometric photon under phototrophic conditions

was calculated to be 19.66 mole kg−1hr−1 and under mixotrophic conditions was

13.71 mole kg−1hr−1.
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Figure 3.6: Comparison between consumption of acetate per day by the algae
in the PBR vs production of total biomass under mixotropic conditions.

3.4.4 Calculation of total acetate consumed

The initial culture medium in the PBR contained 52 mM of acetate when the C.

reinhardtii culture was inoculated. The amount of acetate in the medium was then

measured on a daily basis as total organic carbon (ToC), excluding biomass. ToC

is calculated by subtracting total carbon from total inorganic carbon in the media.

ToC was then used to calculate the concentration of acetate (the formula used is

shown below), which was compared against the amount of biomass dry-weight in

the culture sample taken at same time. The comparison is presented in Figure 3.6

ToC = TC− IC

concentration of acetate =
ToC ∗Dilutionfactor

mol wt of acetate

3.5 Discussion and further developments

Although the updated models cover many details of the metabolic characteristic

of the organism, there are some limitations of the model which remain to be ad-
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dressed in future developments. Both models constructed here are not balanced

in terms of hydrogen and oxygen like their predecessors (Poolman et al., 2009;

Cheung et al., 2013; Chang et al., 2011). As such it is extremely difficult to bal-

ance protons in GSMs because of the difference in pH between compartments.

Some published models (Saha et al., 2011; Mintz-Oron et al., 2011) have dealt

with this issue by assuming a constant pH across all compartments but the idea

is biologically questionable. Further, both the models are mainly focused on pri-

mary metabolism and place less emphasis on secondary metabolic activities. Yet

another issue which has not been completely addressed is the sub-cellular locali-

sation and the intercompartmental transporters. Both models have adapted this

information from their respective predecessors (Cheung et al., 2013; Chang et al.,

2011). However, due to lack of sufficient experimental evidence the information

is not detailed and so most of the transporters were added manually to connect

the metabolic network. Thus, future developments of the model can be focused on

improving these aspects of the models. Nevertheless, the new reconstructions sat-

isfy all theoretical considerations and demonstrate biologically relevant behaviors.

The models will be used to study various aspects of photosynthetic metabolism

which are discussed in later chapters.
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Chapter 4

Photosynthetic properties of

GSMs of A. thaliana and C.

reinhardtii

4.1 Introduction

4.1.1 Models to study photosynthetic properties

Knowledge of plant responses to different light conditions provides the opportu-

nity to identify and modify the components involved in photosynthetic metabolism.

Genome scale metabolic models offer a platform to predict the behavior of plants

and, thus, their responses under different environmental conditions based on the

stoichiometry of reactions. Various genome scale metabolic models have been used

to study cellular and phenotypic characteristic of plants and algae.

Some of the published models have been used specially to study the change in

metabolism under different light conditions. A GSM of rice, representing an ex-

panding leaf, was used to investigate its metabolic responses under different light

intensities (Poolman et al., 2013). The model was also used to study the in-

teractions between different organelles and the reconfiguration of the metabolic

network to produce biomass when the light intensity increased (Poolman et al.,

2014). These studies have proposed an important role of redox shuttling between
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compartments under low light conditions and demonstrated that the role of mito-

chondrial metabolism is likely to change according to the balance between demand

and availability of energy. Also, qualitative similarities were reported in interac-

tions between mitochondrial and chloroplastic metabolism when photosynthetic

products were exported through phloem and when they were used for growth un-

der increasing light condition. A further development of the model was used to

describe the multi-compartmental biochemistry of the chlorophyll synthesis path-

way and the effect of light on it (Chatterjee and Kundu, 2015). A separate GSM

of rice combined with transcriptomics and metabolomics data characterises the

cellular metabolism under a different spectrum of light (Lakshmanan et al., 2015).

Similarly, a GSM of Arabidopsis was used to study the change in fluxes through

various routes of energy and reductant dissipating reactions as a effect of changing

light environment (Cheung et al., 2014, 2015).

Since the full genome sequence of C. reinhardtii was published (Merchant et al.,

2007), GSMs of the algal species are being constructed. The first GSM of C. rein-

hardtii was used to study metabolic characteristics under autotrophic, mixotrophic

and heterotrophic conditions (Boyle and Morgan, 2009). The study concluded that

mixotrophic and autotrophic growth were more carbon efficient. Later develop-

ments of the model (de Oliveira Dal’Molin et al., 2010) were used to study the

pathway producing H2 as a fermentative product, which could be engineered to

produce biofuels. A more detailed and compartmentalised model of C. reinhardtii

(Chang et al., 2011) was used to model the effect of source and quality of light on

its growth. The model was also adopted to study the effect of intracellular flux

distribution after introducing acetate as source of carbon and energy (Chapman

et al., 2015). The latest comprehensive model of C. reinhardtii (Imam et al., 2015)

was used as a platform to study the effect of varying light intensity in algal meta-

bolism with integration of transcriptomics data.

This chapter will present the study on photosynthetic properties of GSMs of A.

thaliana and C. reinhardtii, whose construction was described in Chapter 3, and

their metabolic responses to different light conditions and carbon sources.
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4.2 Methodology

4.2.1 General photosynthetic responses

FBA is used to evaluate the photosynthetic properties of the models. The LP

formulation used to investigate dark metabolic fluxes is shown in Equation 4.2.1.

The objective was to minimise the sum of total reaction fluxes. In addition to

steady state condition (discussed in Section 2.1.6), the necessity to produce all

biomass components is set as a constraint for all the analyses.

minimise : v

subject to


Nv = 0

vν = 0

vATPase = ATPase

vStarch = tStarch

(4.2.1)

• Additional constraints vν = 0 and vStarch = tStarch were added to the equa-

tion to simulate dark metabolism. They represent a flux of 0 to the photon

input reaction and a positive flux through the starch transporter respec-

tively.

Equation 4.2.1 was modified as follows to study metabolism under light con-

ditions.

minimise : v

subject to


Nv = 0

vν = ν

vi..j = ti..j

vATPase = ATPase

(4.2.2)

Where,

• vν = ν indicates a positive flux through the photon input reaction.

The cellular maintenance cost, accounted for by the minimal flux carried by

ATPase reaction was assumed to be same in all simulation conditions. It is based

on the assumption that the changing the biological maintenance cost necessary for

biomass synthesis only affects the minimum photon intensity and does not have

impact on the organism’s responses to higher light intensities.
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4.2.2 Responses under changing light conditions - light

scan analysis

To study the responses of reactions in the model to changing light conditions, equa-

tion 4.2.3 was repeatedly solved with increasing input of photon flux at fixed steps,

until the the system was saturated and responses of the reactions remain linear.

Additional constraints that the cyclic photophosphorylation could not exceed non-

cyclic and that the sum of flux through RuBisCO (carboxylase, oxygenase) does

not exceed an arbitrary set limit were as described in Poolman et al. (2013). The

biomass reactions were constrained to carry flux in an experimentally measured

proportion.

minimise : v

subject to



Nv = 0

vi..j = ti..j

vATPase = ATPase

vν = ν

vLightNonCyc ≥ vLightCyc

vRubiscoCarboxylase + vRubiscoOxygenase = 0.4

(4.2.3)

Where,

• vν = ν is the photon flux into the system and is gradually increased in fixed

steps.

• vLightNonCyc ≥ vLightCyc constraints that cyclic photophosphorylation cannot

exceed noncyclic photophosphorylation

• vRubiscoCarboxylase + vRubiscoOxygenase or the sum of the Rubisco carboxylase

and oxygenase reactions is set to 0.4 to implement the limit on Calvin cycle

flux and reflect the saturation of Rubisco.

All resulting LP solutions were collected as a dataset and used to plot the

flux through reactions as a function of the photon flux. Groups of reactions with

similar responses were identified.
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4.3 Results from the Arabidopsis model

Plant metabolism undergoes various changes during day and night. Broadly they

can be divided into a heterotrophic phase in the dark and a photosynthetic phase

in the light. Metabolic responses under these two conditions are compared on the

latest GSM of Arabidopsis.

4.3.1 Heterotrophic metabolism

As expected a different set of reactions were active during dark metabolism in the

GSM of A. thaliana as compared to light metabolism. Central carbon metabolism

in the dark is shown in Figure 4.1. During this condition, degradation of starch

serves as source of energy by fueling the metabolism. This was evidenced by the

flux through the starch degradation reaction. Along with the starch degradation

the largest flux was related to the OPPP reactions G6Pdh, 6PGLac and PGluDh.

The TCA cycle in the mitochondria was active and was running in cyclic mode us-

ing pyruvate produced from the glycolytic reactions in the cytosol. The operation

of the complete TCA cycle is attributed to the production of ATP via oxidative

phosphorylation, which is evident by the positive flux in all the mitochondrial

complex reactions. In the chloroplast, the transaldolase reaction was active while

the light specific reactions such as RuBisCO, G3Pdh, FBPase, SBPase, PRK were

not active.

4.3.2 Phototrophic metabolism

General photosynthetic properties

The minimal photon flux at which a solution to the Equation 4.2.3 could be found

was 0.32 photon flux unit. Quantum demand, which is calculated as total pho-

ton per CO2 fixed at minimum photon flux, is 13.89. The assimilation quotient,

calculated as CO2 fixed per O2 released, is 0.97 while photon per O2 released is

13.56. These results are within the range of experimentally observed values and

are also consistent with the data reported previously in a GSM of rice (Poolman

et al., 2013).

The central carbon metabolism under light conditions is shown in Figure 4.2.
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Figure 4.1: Central carbon metabolism of Arabidopsis under the dark condi-
tions as determined from the model. OPPP is active along with the transal-
dolase in the chloroplast while the complete TCA cycle is active in the mi-
tochondria
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Figure 4.2: Central carbon metabolism of Arabidopsis under the light condi-
tions as predicted by the model. The reductive pentose phosphate pathway
was active in the chloroplast and the TCA cycle in the mitochondria was
operating in two parts.
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In the light phase, there was high flux through the cyclic and non cyclic pho-

tophosphorylation reactions which generate the energy and reductants necessary

to fuel the metabolism. As shown in Figure 4.2, the reductive pentose phosphate

pathway was active and the carbon assimilated by the RuBisCO. The triose and

hexose phosphates were exported to the cytosol to support synthesis of other bio-

mass components. The OPPP reactions and the transaldolase reaction which were

active in the dark are inactive under the light conditions. The reducing power gen-

erated in the chloroplast is also shuttled to the cytosol both by the MAL-OAA

shuttle Figure 1.10 and TP-PGA shuttle Figure 1.9.

Mitochondrial metabolism

In the mitochondria, unlike in the dark, only half of the TCA cycle reactions carry

flux Figure 4.2. The pyruvate transported to mitochondria is used to produce the

AcCoA which is used by citrate synthase to produce citrate. The αKG produced

by the subsequent reactions is then transported to the cytosol. The malate used

in the other half of the TCA cycle to produce OAA is shuttled to mitochondria

via the MAL-OAA shuttle. The mitochondrial electron transport chain is active

but with a minimum flux and the reductants used in the chain come from the

activity of pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and malate

dhydrogenase.

Lower light conditions

The photosynthetic metabolism starts to change with a small increase in the input

of light flux. Most notable is the shift in energy metabolism from mitochondria to

chloroplast. The production of mitochondrial ATP starts to decline as the avail-

ability of light increases, note the flux of complex I tending near to zero in Figure

4.3. The energy requirement in the chloroplast is now met with the production of

ATP and NADPH by cyclic and non-cyclic phosphorylation. Under this condition,

there was net evolution of O2 from the chloroplast. The photosynthetic O2 thus

released was utilized by mitochondrial respiration producing CO2, which in the

model was assumed to diffuse in part back to the chloroplast to be re-assimilated

in the Calvin cycle. Demands for energy in the mitochondria is fulfilled by a mito-

chondrial malate-oxaloacetate shuttle and a shuttle of αKG and GLT (Figure 4.3)

which transports the reductants generated at the chloroplast to mitochondria and
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Figure 4.3: Reaction responses under low light conditions in the A. thaliana
model are shown in left, where, photon flux is represented in the x-axis and
reaction flux in the y-axis. The network diagram derived by studying the
responses of reactions is shown on the right. The reactions in the diagram
are color coded as in the response curve.

provide NADH to power the mitochondrial electron transport chain and oxidative

phosphorylation.

Responses under high light conditions

Using the light scan analysis technique, the reactions that particularly responded

to a high input of photon flux were identified. This set of reactions could be cat-

egorized into two broad groups, one involved with the central carbon metabolism

that contribute to maintaining normal photosynthetic function and the second in-

volved with photo-protection mechanisms.

The response curves of the reactions that show significant change with increas-

ing input of photon flux are shown in Figure 4.4. Only some specific reactions,

representing a group with similar responses, are shown for clarity. Based on the

activity of reactions, the plot can be divided into 3 distinct regions. Region A is

the lower light range with normal photosynthtic metabolism as discussed above. In

the region B, as the photon flux increases the reactions involved with the xantho-
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phyll cycle start to turn on. The coordinated activity of antheraxanthin epoxidase

(represented by light yellow line in Figure 4.4) and violaxanthin deepoxidase form

a cycle converting antheraxanthin to violaxanthin while concomitantly converting

ascorbate to dehydro-ascorbate. Another set of reactions, glutathione dehydroge-

nase (represented by green line in Figure 4.4) and glutathione-disulfide reductase

(represented by pink line in Figure 4.4) are also active in the same region. This set

of reactions complete a cycle of ascorbate-glutathione combined with xanthophyll

cycle (see left hand side diagram in Figure 4.5).

In the region C, glutamine synthase (represented by a blue line in Figure 4.4),

and carbamoyl phosphate synthase start to turn on with similar flux response

throughout the region. These also form a cycle of glutamate-glutamine with the

help of carbamate kinase (represented by dark yellow color) and carbonate de-

hydratase reactions which operate with similar flux values in the region C. The

carbamate kinase reaction helps the cycle by producing ammonia by using car-

bamoyl phosphate produced by carbamoylphosphate synthase reaction. The CO2

produced in the process is recycled back to bicarbonate by carbonate dehydratase

reaction (see right hand side diagram in Figure 4.5).

It is clear that the reactions which start to show responses in the high light re-

gions can be associated with their function in photo-protection mechanisms. The

function is achieved by a group of reactions operating in a cyclic mode dissipating

energy components. However, there is evidence of many other energy dissipating

cycles reported to be active under high light conditions which were not seen to

show a response in this analysis. Hence, to examine if any other groups of reac-

tions operate in similar fashion under high light conditions, the simulation was

repeated after breaking the cycle shown in the region C of Figure 4.4, by setting

a flux of zero to the carbamoyl phosphate synthase reaction. Surprisingly, many

such cycles, in a group of between 2-4 reactions, were found from subsequent sim-

ulations. Two of the subsequent scan responses are shown in Figure 4.6. In total

19 such cycles were identified and are presented in Figure 4.7. After this point the

flux at the high light conditions was distributed among a large group of reactions.

Thus the analysis was stopped with the assumption that the large group of reac-

tions are less likely to have exactly the same activity in vivo to operate like a cycle

described here.
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Figure 4.4: Reactions responding to high light conditions. The photon flux
is represented on the x-axis and reaction flux on the y-axis. Based on the
pattern of activity of reactions the plot can be divided into 3 regions A, B
and C. Region A represents normal photosynthetic condition as discussed
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Figure 4.6: Metabolic responses under high light conditions after subsequent
removal of reactions that dominated the response curve and when the photon
flux input increased. (a) DCDPKIN and RXN-14199 dominates the response
curve after carbamate kinase (see Figure 4.4) is removed (b) FBPase and 6FP
dominates the region C after the dominating reactions from (a) are removed.
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4.3.3 Discussion

Dark metabolism

There has been relatively little research on plants under dark conditions and thus

the dark metabolism is poorly understood compared to metabolism under light

(Wang et al., 2016). The modelling results obtained here could be a guide to

further develop our understanding of dark metabolism in plants. The results pre-

sented here are consistent with previous experimental observations. For example,

measurement of metabolite levels measured from the leaves of spinach, pea, wheat

and barley during the night have shown high levels of hexose phosphates in the

chloroplast which indicates that the hydrolysis of starch supports the rate of su-

crose synthesis in the dark (Stitt et al., 1985). More recently the promotion of

starch degradation during the dark is also evidenced by measurement of darkness-

responsive proteins in Arabidopsis chloroplasts (Wang et al., 2016). The analysis

has demonstrated that the model is able to successfully predict the breakdown of

starch to support metabolism.

Normal and lower light metabolism

The photosynthetic properties presented here under the light conditions are con-

sistent with various experimental observations and computational analysis. For

example the cyclic and noncyclic photophosphorylation are reported to be the

major contributors in the steady state photosynthesis of rice leaves (Makino et al.,

2002). The cyclic and linear electron transfer in plant leaf is experimentally verified

to induce the synthesis of ATP and reductants needed to activate the Calvin cycle

(Joliot and Joliot, 2002, 2005). Similarly, the non-cyclic activity of the TCA cycle

was studied with stable isotope labelling measurements in photosynthetic leaves,

and that showed much smaller flux through the part of the TCA cycle from 2-KG

to fumarate (Tcherkez et al., 2009), which is consistent with the model prediction.

The observation of recycling of O2 and CO2 and shuffling of reductants between

chloroplast and mitochondria, under low illumination conditions was also reported

from a similar analysis on a GSM of rice (Poolman et al., 2013).

The oxidation of MAL and PYR to support the ETC, which generate ATP and sup-

port cytosolic metabolism, is a more effective way to rebalance energy requirement
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in the mitochondria than in the chloroplasts. The mitochondria can generate more

ATP for an electron pair between H2O and NADPH compared to the chloroplastic

photophosphorylation. As the availability of light increased the ATP is provided

by the activity of photophosphorylation thus showing a clear shift in metabol-

ism to the chloroplast with the use of the alternative oxidase. This observation

supports the idea that the mitochondrial metabolism has a role in optimizing the

photosynthetic performance (Padmasree et al., 2002). Moreover, the results also

show that the metabolic interactions between different compartments in the light

are not fixed but change according to the conditions.

Metabolism under high light conditions

The cycle of violaxanthin-zeaxanthin also called as the xanthophyll cycle is known

to participate in non-photochemical quenching. It has been reported previously

to be involved in protecting plants under stress conditions (Goss and Jakob, 2010;

Maxwell et al., 1999). From the modelling results it is clear that the set of 4 reac-

tions have similar responses to the increasing input of photon flux, indicating that

these set of reactions have similar biological properties. As shown in the Figure 4.5,

the combination of 4 reactions operate with a net oxidation of 2 NADPH, which

can be attributed to its function to dissipate reducing energy which is in excess

under the high light conditions. However, it is important to note that, biologi-

cally, the interconversion of violaxanthin to antheraxanthin is a very slow process.

Moreover, the non-photochemical property is due to the activity of violaxanthin

itself and not the interconversion between violaxanthin and antheraxanthin. Thus

in the modelling context, since the set of 4 reactions operate together and their

net stoichometry oxidises 2 molecules of reducing equivalent, the unique combi-

nation of these reactions forming the cycle is reported as a energy dissipating cycle.

Similarly, the concomitant response of glutamine synthase and carbamoyl phos-

phate synthase along with carbamate kinase and carbonate dehydratase also oper-

ate as a cycle with net hydrolysis of 2 ATP. The fact that the cycle is active in the

high light range can be attributed to its function in photo-protection. There is ex-

perimental evidence of the function of glutamate-glutamine cycle in assimilation of

ammonia in higher plants (Masclaux-Daubresse et al., 2006) but the combination

of these reactions operating together for a photoprotective function has not been
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reported previously. Thus the analysis has identified a new function of well known

reactions in a photo protective mechanism and also demonstrated the capacity of

model to make new predictions.

The observation that a set of reactions show similar responses under high light

conditions and operate in a cyclic manner was a motivation to further study en-

ergy dissipating metabolic cycles in the model. The detailed discussion of the

significance of such cycles is presented in Chapter 6.

4.4 Results from the GSM of C. reinhardtii

4.4.1 Phototrophic metabolism

General photosynthetic response

The minimal photon flux that is required by the model to produce biomass compo-

nents is 16.59 mole kg−1hr−1 which is very close to the experimentally measured

stoichiometric photon flux of 19.66 mole kg−1hr−1. Photosynthetic quotient is

1.14, which is very close to an experimentally obtained value of 1.134 (see Section

3.4) and within the range of values reported for algae (Burris, 1981). Similarly, the

quantum demand is 9.94, corresponding to 8.65 photons per O2 released. In total

351 reactions were required for the model to produce all biomass components.

Normal light conditions

The central carbon metabolism of C. reinhardtii predicted under phototrophic

condition is presented in Figure 4.8. As expected, the majority of flux is directed

towards the Calvin cycle. Some of the energy generated from the light cyclic and

non-cyclic photophosphorylation is utilised in the regenerative limb of the Calvin

cycle. Some of the triose phosphate from the chloroplast is tranported to the

cytosol, converted to PEP and antiported back to the chloroplast to enter the

shikimate pathway and further used in the production of the chlorophylls. Pyru-

vate in the chloroplast is used in various amino acid synthesis pathways including

lysine, cystine, methionine, valine. In the cytosol, pyruvate dehydrogenase con-

verts pyruvate to acetyl CoA, which is then used to produce linoleic acid.
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Table 4.1: Summary of energy components being produced and consumed
in different compartments in the C. reinhardtii model. Production of energy
components in the mitochondria is less as compared to that in the Chloro-
plast.

Compartment Cyto Mito Plas

ATP 0.8386 0.0022 9.4905
NADPH 1.1855 0.0 6.4911
NADH 0.1194 0.0059 0.0399

In the mitochondria, only half of the TCA cycle is operational. The electron

transport chain maintains a minimal flux and is fueled by reductants shuttled

from the chloroplast. As shown in Table 4.1, ATP produced in the mitochondria

is much less compared to ATP produced in the chloroplast. This also support

the fact that, under full illumination conditions, the reductants necessary for the

mitochondrial ETC comes from the photo-phosphorylation in the chloroplast.

Responses under high light conditions

The light scan analysis technique was used to study the response of the C. rein-

hardtii model to an increasing input of photon flux, under phototrophic conditions.

The analysis shows that reactions belonging mainly to the central carbon meta-

bolism involving the Calvin cycle reactions, nucletide metabolism, glycolysis and

amino acid synthesis pathways showed significant changes in activity in response

to increasing photons. The other group of reaction that responded were related

to the protection mechanism in a similar pattern observed in the A. thaliana model.

The response curve for some of the representative reactions is shown in Figure

4.9. Based on the pattern of responses and the point at which a set of reactions

turn on or saturate, the response curve is divided into 4 regions. Region A shows

the normal photosynthetic activity. The photorespiratory reactions start to turn

on in region B and start to saturate at the region C, where the xanthophyll cycle,

as discussed above, starts to turn on. The cyclic activity of starch synthesis and

degradation reactions, acting as an energy dissipation mechanism, start to turn on

in the region D. The recurring pattern of two or more reactions involved in energy
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metabolism carrying higher flux with increasing light input was also observed as

in the case of A. thaliana model.

4.4.2 Mixotrophic metabolism

General photosynthetic properties

The metabolism under mixotrophic conditions was predicted by using the LP

formulation described in Equation 4.2.1. The experimentally obtained biomass

composition (see section 3.4) was constrained as outputs while both acetate and

CO2 were allowed to be used as source of carbon. The amount of C2H4O2 used in

the metabolism, as predicted by the model is 23.676 mole kg−1hr−1which is com-
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parable to the experimental value of acetate consumed on day 3 of the experiment

when the growth rate was near maximum (see Figure 3.6). The minimal photon

flux that is required by the model to produce biomass components in the propor-

tion defined above is 9.98 mole kg−1hr−1 which is very close to the stoichiometric

photon flux calculated from the experimental measurements 13.71 mole kg−1hr−1.

The photosynthetic quotient, ie. O2 produced per CO2 fixed is 0.465 which is

relatively low compared to the value under phototrophic conditions but this is

the result of both acetate and CO2 being available as carbon sources. However,

it should be noted that the elemental balance equation considers only acetate as

the source of carbon. In total 363 reactions were required to produce biomass

components.

Responses under normal light conditions

The network diagram to represent assimilation metabolism under mixotrophic con-

ditions is shown in Figure 4.10. The prediction shows decrease in activity through

the Calvin cycle reactions and increased activity in the TCA cycle which is oper-

ating in a non-cyclic manner. The change in flux pattern can be attributed to the

acetate assimilation pathways which carry most of the flux in the network. In the

cytosol, the acetate was converted to acetyl CoA which was then transported to

the mitochondria to be fed into the TCA cycle where it was converted to citrate.

Some of the citrate was converted to succinate and the remainder converted to

malate in the glyoxylate cycle. By doing so the network bypasses two of the CO2

producing reactions in the TCA cycle. The remaining half of the cycle is continued

by the succinate dehydrogenase reaction producing fumarate while concomitantly

producing reduced ubiquinol which is used in oxidative phosphorylation.

4.4.3 Discussion

The results from this study have emphasised the role of central carbon metabol-

ism as a multi-functional network wherein the intermediates generated from the

carbon assimilation are used in maintaining the photosynthetic metabolism and

supporting biosynthetic pathways. Moreover, published results from various ex-

perimental work support the predictions made by the model. For example the

increase in flux through the reactions involved in central carbon metabolism and

other biosynthetic pathways associated with amino acid metabolism is consistent
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with experimental work in C. reinhardtii under high-light stress (Davis et al.,

2013). The measurements from the nuclear magnetic resonance and mass spec-

trometry analysis showed a significant increase in the level of amino acid pools in

high-light acclimated C. reinhardtii cultures. Similarly, a separate experiment in

which the metabolite levels were measured from C. reinhardtii treated with a fluc-

tuating light environment also showed a rapid increase in the metabolites involved

in the central carbon metabolism and the Calvin cycle reactions (Mettler et al.,

2014). Likewise, the activity of photorespiratory reactions, as observed from the

light scan analysis and the subsequent metabolism of glycolate is also reported to

be involved in photo-protection mechanism by promoting non-assimilatory elec-

tron transport in C. reinhardtii (Renberg et al., 2010). All these observations

highlight the predictive accuracy of the model.

The mixotrophic metabolism predicted by the model is consistent with the exper-

imental observations and also comparable to some of the published results from

modelling analysis (Chapman et al., 2015; Imam et al., 2015). The decrease in

activity of photosynthetic activity under mixotrophic condition in C. reinhardtii

is attributed to the presence of alternative pathways to compensate the electron

flow (Heifetz et al., 2000; Johnson and Alric, 2013; Johnson et al., 2014). An-

other interesting observation was the decrease in activity of the oxidative pentose

phosphate pathway reactions and increase in flux through the acetate assimila-

tion pathways in mitochondria. The activity of the isocitrate lyase reaction under

mixotrophic conditions, which helps to bypass the CO2 producing reactions by di-

rectly producing succinate and glyoxylate from isocitrate, have also been reported

from a experimental work (Plancke et al., 2014). These results show that the model

developed here is able to accurately represent both photorophic and mixotrophic

metabolism and explain the metabolic interactions under both conditions. They

also emphasise the role of central carbon metabolism in supporting photosynthesis.

4.5 Conclusion

Overall, the analysis presented here have highlighted the importance of primary

photosynthetic metabolism and its flexibility, both in plant and algae, in main-

taining normal cellular functions, synthesis of biomass components, and photo-

protection mechanism under high light conditions. A unique pattern of set of
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reactions responding to high light condition, forming metabolic cycles, was identi-

fied which showed the scope of further investigation of such cycles in the network.

This aspect will be discussed in more details in Chapter 6. Similarly, the role of

mitochondrial metabolism under light condition, specially in balancing the energy

requirement have been emphasised. The analysis also show that the reactions

mediated by the thioredoxin responded as expected in model flux distribution,

despite the fact that it is not specifically included. Moreover, the analysis have

demonstrated that both the models are able to correctly represent well known pho-

tosynthetic properties and thus are ready to be used for exploring newer features

in the metabolic networks.
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Chapter 5

Effects of enzyme knockouts on

GSM of A. thaliana

5.1 Introduction

With the increasing demand of food supplies, there is a compelling need to im-

prove productivity of crop plants, which has been one of the main focus of the

photosynthetic research (Raines, 2003). There is overwhelming evidence from in

vivo and in silico analysis to suggest that improving photosynthetic capacity of

plants can help improve crop productivity (Poolman et al., 2000, 2003; Raines,

2003; Lefebvre et al., 2005; Simkin et al., 2015, 2016). Creating transgenic plants

is a popular choice to study the regulation of photosynthesis and understand prop-

erties of the enzymes involved. In this regard, plants with increased or reduced

activity of individual enzymes from the Calvin cycle have been used to study the

regulation of photosynthetic carbon flow in higher plants (Raines, 2006; Simkin

et al., 2015). This chapter is centered on the knock-out and deregulation of Calvin

cycle enzymes in conjunction with the experimental work done by the collabo-

rating partners in the AccliPhot consortium at ETH Zurich. Discussion of the

physiological impact of knocking out Calvin cycle reactions from the model will

be presented followed by the results from the model after removing these enzymes

singly and in combination.

The Calvin cycle is an integral component of the central carbon metabolism in
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plants (see section 1.4.1). This study will focus mainly on the four enzymes, SB-

Pase, FBPase, GAPdh and Ru5Pk whose activities are regulated by the ferredoxin

thioredoxin system (see section 1.4.1). Briefly, these enzymes are active in the

light and inactive in the dark due to thioredoxin regulation. More details about

the metabolic properties of these enzymes is presented below.

SBPase

SBPase (EC-3.1.3.37) catalyzes the conversion of SBP to S7P and phosphate and

does not have a cytosolic isoform. Besides thiredoxin-mediated regulation, the

activity of SBPase is also regulated by stromal pH and Mg2+ levels, which vary

in response to changing light conditions (Buchanan, 1980, 1991). It functions to

regenerate RuBP in the Calvin cycle (Raines et al., 2000). In addition to its role in

the regenerative limb, SBPase is known to influence the control of carbon assimi-

lation along with RuBisCO thus also acting as a limiting factor for CO2 fixation in

photosynthetic leaves (Poolman et al., 2000; Raines et al., 2000). Many transgenic

species of plants with either reduced or increased activity of SBPase have been

used to study the control it imparts in photosynthetic metabolism. These studies

have unanimously demonstrated that the reduction in SBPase activity severely

affects CO2 assimilation and growth of the plants (Raines et al., 2000; Olcer et al.,

2001; Harrison et al., 2001; Raines, 2003; Lefebvre et al., 2005; Tamoi et al., 2006;

Liu et al., 2012; Ding et al., 2016). Thus, SBPase may serve an useful target for

various metabolic engineering studies to improve photosynthesis.

FBPase

FBPase (EC-3.1.3.11) is another important enzyme of the regenerative limb of the

Calvin cycle and catalyses the conversion of FBP to F6P. It has a cytosolic isoform

that is not redox regulated (Serrato, Barajas-Lopez, Chueca and Sahrawy, 2009;

Serrato, Yubero-Serrano, Sandalio, Munoz-Blanco, Chueca, Cabllero and Sahrawy,

2009). The chloroplastic isoform has 3 cysteine residues in the structure, 2 of which

form disulphide bond and are reduced by thoredoxin during light activation thus

controlling its regulation (Chiadmi et al., 1999). Out of 3 FBPase genes identified

in A. thaliana, two are localised in the chloroplast and function in regeneration

of RuBP in the Calvin cycle, and one of them is localised in the cytosol and is

known to play an important role in sucrose metabolism (Lee et al., 2008). Various
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experimental transgenic experiments have established the role of FBPase in CO2

assimilation as well as in synthesis of various biomass components (Lloyd et al.,

1991; Sahrawy et al., 2004; Tamoi et al., 2006; Rojas-González et al., 2015).

GAPdh

GAPdh (EC-1.2.1.13) catalyses the formation of 1,3-bisphosphoglycerate by oxidis-

ing glyceraldehyde-3-phosphate whilst reducing NAD+ to NADH. It has 2 isoforms

one localised in the chloroplast and the other in the cytosol. It is encoded by a to-

tal of 7 genes in Arabidopsis out of which two of them, GAPCp1 and GAPCp2, are

localised to the chloroplast and are involved in photosynthesis (Munoz-Bertomeu

et al., 2009). In addition to its chloroplast isoform, plants contain a cytosolic

non-phosphorylating NADP-dependent GAPdh (EC 1.2.1.9) which generates re-

ducing power in the form of NADPH for biosynthetic processes (Habenicht et al.,

1994). The activity of the cytosolic isoform was found to increase 2-fold under

oxidative stress, which underlines its potential role to maintain reductant levels in

the cytoplasm of plant cells under such stress conditions (Bustos et al., 2008).

Ru5Pk

Phosphoribulokinase (EC-2.7.1.19) is part of the regenerative limb of the Calvin

cycle and is involved in CO2 fixation in photosynthetic organisms. It catalyses

the formation of ribulose 5-phosphate and ATP to ribulose 1,5 bisphosphatase,

ADP and phosphate. In addition to the thioredoxin system, activity of both

enzymes, GAPdh and Ru5PK, are also regulated by a nuclear-encoded protein

called CP12, which forms a Ru5Pk/GAPDH/CP12 multi-protein complex in the

chloroplast (Pohlmeyer et al., 1996; Marri et al., 2009; López-Calcagno et al., 2017)

The deactivation and activation of GAPdh and Ru5Pk activity is mediated by the

the formation and dissociation of the protein complex, which occurs in response

to changes in availability of light (Howard et al., 2008).

Modelling studies of the Calvin cycle enzymes

Smaller models with just the Calvin cycle reactions have been used to study the

effect these enzymes have in photosynthetic metabolism. A detailed metabolic

model of the Calvin cycle was used to demonstrate that SBPase potentially ex-
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ert considerable control over carbon assimilation and starch deposition (Poolman

et al., 2000). Similarly, a model of chloroplast metabolism was used to investigate

viable pathways under light and dark conditions and under dark with addition of

SBPase (Poolman et al., 2003). The investigation is further extended here to study

deregulation of both SBPase and FBPase. Moreover, a large-scale model of a plant

has never been used before to study the effect of knockouts of these Calvin cycle

enzymes. In this regard, the study of metabolic fluxes under knockout conditions

presented here can be a guide to further explore the photosynthetic properties of

these enzymes and their importance in plant metabolism.

5.2 Method

5.2.1 Investigating knockout properties with the GSM

The GSM of A. thaliana constructed in Chapter 3 was used in this study. Reactions

catalysed by each of the enzymes SBPase, FBPase, G3Pdh, Ru5Pk were identified

and corresponding LP constraints set to zero individually and in combination,

using the formulation as described in Equation 5.2.1. If a feasible solution was

possible to the LP problem, indicating viability of the mutant, the rerouting of

the fluxes in the network was noted. The fluxes were then compared with the

solution under normal conditions, hereafter referred to as the wild-type solution.

The information is used to study the role of other enzymes in the network to make

such changes possible and to develop an understanding of the physiological impact

that is likely to happen in vivo. Mainly, the following changes were noted:

• reactions whose fluxes increase in the mutant compared to the wild-type

• reactions whose fluxes decrease in the mutant compared to the wild-type

• reactions whose fluxes were reduced to zero in the mutant

• reactions that carry flux in the mutant but not in the wild-type

• reactions whose flux does not change as a result of the mutation

Unless specified otherwise, the terms wild-type and mutant are used to state the

model solution under normal and the knockout conditions respectively.
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minimise : v

subject to



Nv = 0

vi..j = ti..j

vATPase = ATPase

vν = ν

vLightNonCyc ≥ vLightCyc

vRubiscoCarboxylase + vRubiscoOxygenase = 0.4

vKO−rxn = 0

(5.2.1)

Where,

• vKO−rxn = 0 indicates that the flux through the reaction under study (ei-

ther SBPase, FBPase, GAPdh, Ru5Pk or combination of them under dual

knockout conditions) is zero.

• all the remaining constraints have similar meaning as described in Equation

4.2.3

5.2.2 Elementary modes analysis

To study the effect of deregulation of SBPase and FBPase, a smaller model of

Calvin cycle reactions was adapted from a previous study (Poolman et al., 2003).

This is a self-sufficient smaller model which uses input of photons as source of en-

ergy and CO2 as source of carbon and output of triose phosphates. The reactions

that are known to be active only under the light conditions, such as SBPase, FB-

Pase, Rubisco, Ru5PK and GAPdh, were blocked to represent dark metabolism

and elementary modes (see Section 2.1.5) were computed. Subsequently, SBPase

and FBPase were then allowed to be active under dark conditions, thus represent-

ing their deregulation, and elementary modes were computed again.

5.3 Results

The overall summary of results from the knockout investigation is presented in

Table 5.1. The reactions that increased, decreased, turned on, turned off or car-

ried the same flux as a result of the knockout are summarised in the Table 5.2.
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Additional experimental results obtained from the collaborating partner at the

ETH Zurich are presented in Appendix A. Experimental knockouts of SBPase and

FBPase were viable although with severely retarded phenotype. The mutant lines

sbp-1 and sbp-2, of SBPase and fbp-2 of FBPase were compromised in growth with

pale leaves after 21 days of growth as compared to the wild-type plant. In contrast,

the mutant line gapb-1 for GAPdh grew healthy with little observable phenotype

after 21 days of growth. The knockout mutant for Ru5Pk however was not viable.

These observations are consistent with the results from the model prediction. The

central carbon metabolism of the wild-type solution is represented in Figure 4.2.

The following sections will present in details the rearrangement of fluxes under

each knockout scenerio.

Table 5.1: Comparison of experimental and model enzyme knockouts. Model
predictions are based on feasible LP solution after removal of reaction catal-
ysed by respective enzymes. Experimental results are based on growth of
mutant plant. I/P, experiment in progress.

Knockout Model Experimental
SBPase Viable Viable
FBPase Viable Viable
G3Pdh Viable Viable
Ru5Pk Non-viable Non-viable
SBPase + FBPase Viable I/P

Single knockout of SBPase

The active reactions in the central carbon metabolism after the removal of the

SBPase reaction are represented in Figure 5.1. Significant changes were observed

in the chloroplast specially in the regenerative limb of the Calvin cycle. The

transaldolase reaction, which is normally inactive under light condition, was active

as an effect of the knockout and carried a flux equal to the flux through the SBPase

reaction in the wild-type solution. The flux through the FBPase reaction increased

and the increase in flux was also equal to the flux through SBPase reaction in

the wild-type solution. Since the SBPAld reaction that uses E4P and DHAP to

produce SBP was turned off, the E4P produced by the 2-transketolase reaction was
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Table 5.2: Summary of model flux responses to enzyme knockouts compared
to the wild-type. FB-G6P, knockout of both isoform of FBPase and the G6P
transporter; FB-SB, dual knockout of SBPase and FBPase. Symbols: ×,
knocked out; ↑, increased; ⇑, increased from zero; ↓, decreased; ⇓, decreased
to zero; ⇔, changed direction; and -, remained unchanged.

KO reaction: SBPase FBPase FB-G6P FB-SB GAPdh
Chloroplast
SBPase × ↑ ↑ × -
Transald ⇑ ⇑ ⇑ ⇑ -
FBPAld ↑ ⇓ ⇓ ⇓ -
SBPAld ⇓ ↑ ↑ ⇓ -
FBPase ↑ × × × -
PGI - ↓ - ↑(⇔) -
TriPIsom - ↓ - ⇓ ⇓
PGM - - ↑ - -
StSyn - - ↑ - -
PPI - - ↑ - -
G1PAt - - ↑ - -
PGKin - - - - ⇓
GAPdh - - - - ×
Cytosol
PGM - - ⇓ ⇓ -
FBPAld - ↑ ⇓ ↑ -
FBPase - ↑ × ↑ -
TriPIsom - ↑ - ↑ ↑
PGI - - - ⇑ -
LacDh - - - - -
ASPTran - - - - ↑
GAPdhC - - - - ⇑
PGKin - - - - ⇑
Mitochondria
Cpx-II - - - - ↑
Cpx-IV - - - - ↑
Transporters
G6P-Plas - - × ↑(⇔) -
GAP-Plas - ↑ ⇓ ↑ -
DHAP-Plas - - - - ↑
ATP-ADP-Plas - - - - ↑
Photon-tx - - ↑ - ↑
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Figure 5.1: Central carbon metabolism of the SBPase knockout mutant.
The reactions marked with a X is removed from the model. The reactions
in green carry the same flux as the wild-type solution, reactions in blue are
inactive in wild-type but turn on in the knockout, and reactions in red have
increased flux values compared to the wild-type solution. Reactions in grey
carry no flux in the knockout mutant. The flux through the SBPase reaction
was substituted by the increase in flux through the FBPase reaction and
turning on of the transaldolase reaction.
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used by the transaldolase reaction. The S7P produced by the transaldolase reaction

was than used by 2-transketolase reaction completing the regenerative limb of the

Calvin cycle. The rest of metabolism remained unaffected. Assimilation quotient,

quantum efficiency and quantum demand remained unchanged. The objective

value however was increased in the mutant and the difference was equal to the flux

of SBPase in wild-type solution.

Single knockout of FBPase

The active reactions in the central carbon metabolism after removal of the chloro-

plastic FBPase reaction is represented in Figure 5.2. The most notable change

under this knockout condition was the flux carried by the transaldolase reaction,

which carried no flux in wild-type solution. The flux through the SBPase, cytoso-

lic FBPase and GAP transporter reaction increased. The sum of the increased

flux through SBPase, transaldolase and cytosolic FBPase reactions was equal to

the flux of FBPase in the wild-type solution. The flux through the PGI reaction

decreased while the flux through G6P transport reaction fell to zero.

GAPdh

The active reactions in the central carbon metabolism after removing the reaction

catalised by GAPdh in the chloroplast are represented in Figure 5.3. The major

changes were observed in the reductive limb of the Calvin cycle. As the chloro-

plastic GAPdh reaction was knocked out, the flux through the PGKin reaction

was also zero. Flux through the triose phosphate transporters increased thus sup-

porting the flux through cytosolic isoforms of the GAPdh and PGKin. The PGI

reaction in the chloroplast was not carrying any flux, thus the carbon required for

the synthesis of starch was transported from the cytosol by the G6P transporter.

In the mitochondria, the TCA cycle reactions did not carry any flux. However, a

smaller increase was observed in the flux through Complex III and Complex V in

the mitochondria. Smaller changes were observed in rest of the metabolism across

all compartments.
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Figure 5.2: Central carbon metabolism of the FBPase KO mutant. The
flux through the SBPase reaction has increased while transaldolase and the
cytosolic isoform of FBPase is activated. Colour scheme is same as in Figure
5.1.
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Ru5Pk

A feasible LP solution was not possible in case of the Ru5Pk KO indicating that

the presence of Ru5Pk is vital for continual operation of the regenerative limb

in the Calvin cycle and hence photosynthesis in plants. Homozygous lines of the

Ru5Pk KO mutant were not viable during in vivo experiments as well.

Dual knockout of FBPase (c+ ch) and G6P transport

Experimental results (Rojas-González et al., 2015) suggest that when the chloro-

plastic isoform of FBPase is absent the cytosolic isoform could not compensate for

its activity. Similarly, no activity of the G6P transporter is found in the mature

photosynthetic leaves (Kammerer et al., 1998; Niewiadomski et al., 2005). Hence,

the FBPase knockout investigation was repeated after removing these reactions

from the model. The central carbon metabolism of this knockout mutant is rep-

resented in Figure 5.4. Although the qualitative results were similar to the single

knockout of FBPase, the flux through the starch synthase reaction increased. The

starch was then converted to maltose and transported to the cytosol. The maltose

in the cytosol was converted to glucose, by the amylomaltase reaction, which was

further used to support carbohydrate metabolism.

SBPase, FBPase dual knockout

Although a clear complementary role between SBPase and FBPase is seen when

either one of them were knocked out from the model, the dual knockout of both

of these reaction still produced a feasible solution. The central carbon metabolic

network of this double knockout is shown in Figure 5.5. As with the SBPase and

FBPase single knockouts, the transaldolase reaction helped support flux through

the regenerative limb of the Calvin cycle. G6P was imported into the chloroplast as

opposed to its export in the wild-type. This import supplied the carbon necessary

for the synthesis of starch. Further, the PGI reaction was operating in the reverse

direction, converting G6P to F6P, thus making F6P available for the Calvin cycle.
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Figure 5.5: Central carbon metabolism of the SBPase, FBPase dual KO mu-
tant. Transaldolase reaction helps to maintain flux through the regenerative
limb, the flux through cytosolic isoform of FBPase is increased and G6P is
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5.3.1 Elementary modes analysis of Calvin cycle to

study effect of deregulation

In total, 5 elementary modes were computed under dark conditions one mode

each producing GAP,PGA, DHAP, E4P, R5P, G6P (first 5 modes shown below).

When SBPase was included one additional mode was seen, completely oxidising

G6P from starch with reduction of NADP (6th one below). These modes are

consistent with those presented by Poolman et al. (2003). Further, when FBPase

was included, one more additional mode, 7th in the list below, was computed, with

its net stoichiometry exactly same as the 6th mode. The reactions involved in the

elementary mode 6 and 7 are represented in Figure 5.6. The net stoichiometry of

all elementary modes are listed below.

1. 6 NADP + Starch -> 3 CO2 + 6 NADPH + DHAP

2. 6 NADP + Starch -> 3 CO2 + 6 NADPH + GAP

3. 4 NADP + Starch -> E4P + 2 CO2 + 4 NADPH

4. 2 NADP + Starch -> R5P + CO2 + 2 NADPH

5. Starch -> G6P

6. 12 NADP + Starch -> 6 CO2 + 12 NADPH

7. 12 NADP + Starch -> 6 CO2 + 12 NADPH

5.4 Discussion

One of the original goals of this study was to investigate if the GSM of A. thaliana

is able to represent a growth of the plant after removal of some of the important

Calvin cycle reactions. Further, the aim was to understand the metabolic rear-

rangement of the fluxes at a cellular level under each knockout conditions, that

make the mutation viable. The results show that the model is able to cope with

the removal of single reactions catalysed by SBPase, FBPase and GAPdh and give

a feasible solution to the LP problem, indicating that the in vivo knockout of these

enzymes will be viable. The single knockout of Ru5Pk was correctly predicted to
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be non-viable. The predictions are qualitatively consistent with the experimental

observation presented here and those presented by Liu et al. (2012). Moreover,

the results show that the rearrangement of fluxes within the chloroplast, more

specifically within the Calvin cycle, is capable of sustaining the knockout of any

of the reactions. Although the model can discover compensating routes in the

metabolic network, it cannot predict whether the plant’s regulatory mechanisms

can readjust to activate the alternative route, where growth is poorer than wild

type. This suggests that the alternative route lack the capacity to carry the wild-

type flux. Nevertheless, the results demonstrate the flexibility of the chloroplastic

metabolism, since the alternate routes in the network under knockout conditions

involves reactions that are not normally active simultaneously.

SBPase

Many in vivo experiments have been performed to study the effect on photosyn-

thesis caused by SBPase mutations. In an experiment using antisense tobacco

plants, Harrison et al. (2001) demonstrated that a small decrease in SBPase ac-

tivity affected the RuBP regeneration capacity but not the activity of RuBisCO,

indicating some degree of assimilation could still be active. Similarly, Raines et al.

(2000) have reported a significant reduction in the rate of light and CO2 satu-

rated photosynthesis with a small decrease in the activity but the plants were

still viable. Further, the investigation demonstrated that the reduction in SBPase

activity made no significant change in the level of sucrose but the level of starch

decreased linearly with reducing activity of SBPase. That means that although

the plant is not able to deposit starch for night time metabolism, it is enough to

support its growth. Moreover, other factors, such as the stages of leaf develop-

ment, are also known to influence the control SBPase exerts on photosynthesis

(Olcer et al., 2001). The photosynthetic rate of the young leaf with reduced levels

of SBPase was found to be higher in young leaves compared to mature fully grown

leaves under the same mutation condition.

FBPase

A controlled reduction in the activity of the chloroplastic FBPase in an antisense

pea plant was reported to cause increases in leaf fresh weight, carbon assimilation

rates and total leaf carbohydrates, specially sucrose, as compared to the wild-type
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plant (Sahrawy et al., 2004). However, a more recent study presented by (Rojas-

González et al., 2015) contradicts the results. They performed experiments with

reduced levels of both chloroplastic and cytosolic FBPase, individually and in

combination. Not much difference was observed in the growth of the plant with

decreased levels of cytosolic FBPase. However, the mutants with reduced activity

of chloroplastic FBPase and combined reduction in activity of both isoforms of

FBPase resulted in plants with reduced shape and size of the leaves, reduced pho-

tosynthetic capacity, lower content of soluble sugars and less starch accumulation

as compared to the wild-type. Their results also show that these mutations did

not affect the seed viability and germination capacity of the plant. On the other

hand, transgenic plants with a 1.7 fold increase in level of FBPase activity showed

the same physical phenotype as the wild-type plant moreover with an increase in

the amount of starch in the source leaves (Tamoi et al., 2006).

GAPdh

Experimental results from the knockout mutation of GAPdh isoforms (GAPCp1

and GAPCp2, both plastid localised) have shown that reduced activity of the en-

zyme severely affects the phenotype with slower root development, dwarfism and

sterility caused by drastic changes in sugar and amino acid balance in Arabidop-

sis (Munoz-Bertomeu et al., 2009). Further experimental evidence also suggests

that these genes have an important role in supplying serine to non-photosynthetic

organs such as roots via the phosphorylated serine biosynthesis pathway (Munoz-

Bertomeu et al., 2010). The transcriptomics and metabolomics analysis by Anoman

et al. (2015) suggested that the lack of GAPCp genes affects nitrogen and carbon

metabolism brought about by changes in levels of glycerate and glutamine. Their

analysis concluded that GAPdh acts as a metabolic connector of glycolysis with

other pathways such as serine biosynthesis and ammonium assimilation pathways.

However, a recent study based on knockout of two genes of GAPdh (gapcp1,

gapcp2) argued that all these activities take place in heterotrophic conditions and

the activity of GAPCp is less important in photosynthetic cells (Anoman et al.,

2016). The experimental result used in this study (Appendix A) also shows that

the growth of the knockout mutant of GAPdh (gapb1) is comparable to its wild-

type growth, indicating that the mutation of single GAPdh gene has no phenotypic

effect.
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5.4.1 Newer properties of the enzymes

Based on these previous observations, an impaired phenotype of the complete

knockout mutation, for both SBPase and FBPase, as shown in the experimental

results are not surprising. Such knockouts are known to reduce the metabolic

capability of the organism. Nevertheless, the results presented here, of the rear-

rangement of the fluxes under each knockout condition, have demonstrated possible

metabolic routes under each knockout condition that could make the mutation vi-

able demonstrating scope for further research. For example, SBPase and FBPase

were shown to complement each other’s activity when either of them is active.

The complementary role of the SBPase and FBPase can also be attributed to

their common evolutionary origin and sequence similarity at the protein level. In

total, 12 out of 19 amino acids sequences involved in the substrate binding site

of FBPase are common to SBPase. Such highly conserved residues in their active

sites indicate their similar catalytic mechanism (Raines et al., 1992). Most of the

experimental work published so far are limited to mutation, either knock down or

over expression, of a single enzyme. Combined mutation of these enzyme such as

over expression of FBPase when SBPase is knocked out and vice versa could be

performed.

Further, the results presented here also highlight a novel role of the enzyme transal-

dolase. Although the reaction catalysed by the enzyme is known to be active only

in the dark, and has different kinetic properties compared to SBPase and FBPase,

it helps to support the flux through the Calvin cycle under all knockout condi-

tions. Although there is some evidence for the light inhibition of transaldolase

(Anderson, 1981), it has been contradicted by a more recent observation (Caillau

and Quick, 2005), which suggest that the enzyme is differently regulated at the

level of gene expression and in response to environmental factors in plant tissue.

Previously it has been discussed (Poolman et al., 2000) that if the plants were to

be viable without the activity of SBPase there must be one or more secondary

route that the Calvin cycle should operate through. Similarly, elementary mode

analysis (Poolman et al., 2003) showed that one such possible alternate route is

via transaldolase. This conclusion complements the current results from the GSM

evidenced by the flux of transaldolase in the mutant being equal to that of SB-

Pase in the wild-type. Thus, the physiological significance of the alternative flux
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modes involving transaldolase in the light holds an interesting scope for further

investigation.

5.4.2 Prediction of phenotype from FBA studies

Analysis of the model allows us to identify alternative pathways that effectively by-

pass the missing reaction, allowing continued carbon assimilation. Although this

technique has in this case proved to be a good predictor of (non)viability of the

clones, prediction of the phenotypic impact based on the analysis of the network

could be further developed. On the other hand, the structural analysis do not

consider any kinetic properties or the change in activity level of enzymes under

different environment conditions. Similarly, some of the reactions participating

in the solutions set for the mutants are known to have very low activity under

photosynthetic conditions. A notable example is that the G6P transport has been

reported to have no activity in fully grown leaves (Niewiadomski et al., 2005). This

evidence also emphasises the need for detailed experimental data to accurately

relate the metabolic activity with the results predicted from FBA studies.

5.4.3 Deregulation of SBPase and FBPase could be

lethal to plants

The aim of the elementary mode analysis on the smaller model of the Calvin cycle

was to investigate possible viable pathways when an naturally occurring regulatory

mechanism of two of the light active reactions, SBPase and FBPase, is deactivated

at the same time. The analysis has been able to identify a viable pathway through

the Calvin cycle under such conditions. From a more complete analysis of the

model of Poolman et al. (2003), it has been reported that the deregulation of

SBPase activity could have adverse effects on the plant phenotype. When both of

these enzymes are deregulated, the system has two alternate routes through which

starch is oxidised to CO2 with no production of carbohydrate but reducing NADP

to NADPH. This will accumulate a lot of reductant in the system, potentially more

than could be used in the network. Thus based on these observations, it can be

predicted that such deregulation will exhibit increasingly impaired phenotypes in

response to dark periods.
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5.4.4 Conclusion

Overall, the GSM of Arabidopsis was able to correctly predict the viability or

non-viability of all individual KO mutants and indicate the possibility of viable

dual knockouts based on analysis of metabolic fluxes in the network. The analysis

also highlighted a novel role of the enzyme transaldolase in photosynthetic meta-

bolism and further proposed newer features of the metabolic network such as the

complementary roles of SBPase and FBPase. The results have also illustrated a

supportive role of the cytosolic isoforms of the Calvin cycle enzymes in maintaining

continuous metabolic flux in the network. Correspondingly, the need for further

experimental data and development of more theoretical methods to accurately

predict the phenotypic impacts of plant mutation is also portrayed. Moreover,

the study has also identified a scope for further experimental work that will help

further develop our understanding of the photosynthetic machinery of plants.
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Chapter 6

Energy dissipation mechanisms

of Arabidopsis and

Chalmydomonas

6.1 Introduction

Light is the source of energy for plants and algae and is indispensable for pho-

tosynthesis which drives their growth and development. It is absorbed by the

antenna pigments in the thylakoid membrane inside the chloroplast (see Chapter

1). As shown in Figure 6.1, the absorbed light excites the chlorophyll molecule

and the energy thus generated can either be used in the photochemistry, i.e. is

used in the CO2 assimilation, is dissipated as heat or is radiated as florescence. A

common strategy that has evolved in photosynthetic organisms for the dissipation

of excess energy as heat is collectively referred to as non-photochemical quenching

(Demmig-Adams and Adams, 1996; Müller et al., 2001). There are other mecha-

nism, such as metabolic cycles operating in different part of metabolism, that are

involved in dissipation of energy as heat. However these mechanisms are less well

studied. This chapter will present methods to identify energy dissipating routes

in metabolism and discuss energy dissipating nodes and modes identified in the

GSMs of A. thaliana and C. reinhardtii.
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Chl*

photochemistry

heat
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Figure 6.1: Representation of the fate of light absorbed by chlorophyll
molecule in light harvesting complex. Absorbed light energy excites the
chlorophyll molecules; the energy thus generated can either be used in the
photochemistry, dissipated as heat or radiated as fluorescence. Chl*; excited
state of chlorophyll.

6.1.1 Biochemical basis of energy dissipation mecha-

nisms

As plants and algae are exposed to different light intensities over the course of a

day, they have to continuously adapt to cope with such changes. Both low and

high light exposure limits photosynthetic performance in plants and algae (Martins

et al., 2014; Beckers et al., 2016). The production of energy components, ATP and

NADPH, by cyclic and noncyclic light reactions is potentially much higher, under

supra-optimal light conditions, than that needed by the bio-synthetic pathways

(Beckers et al., 2016). The rate of assimilation of inorganic nutrients like nitrate

and sulfate is also increased under high light conditions (Mettler et al., 2014).

Availability of NADPH and ATP, in excess, beyond that required for the actual

demand, yields a metabolic situation in which no reducible NADP+ would be avail-

able. As a result of this, excited chlorophyll molecules, can activate oxygen to its

singlet state producing reactive oxygen species (ROS) such as superoxide anions,

hydroxyl radicals and hydrogen peroxide (Wilhelm and Selmar, 2011). Light in-

duced production of ROS is increased when the absorption of light energy becomes

excessive compared to the photosynthetic activity potentially leading to cell death
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in leaves (Ksas et al., 2015). The time scale of the dynamics of these responses

can be of the order of seconds owing to rapid movement of leaves, transient shad-

ing, rapidly moving clouds etc (Pearcy, 1990; Geiger and Servaites, 1994) which

ultimately affect the long term acclimation and growth of the organisms.

Plants and algae have evolved many biochemical, physiological and structural

changes thus enabling them to protect themselves by adapting to changing envi-

ronmental conditions (Walters, 2005). High light acclimation mechanisms work on

different timescales and are complex multicomponent processes (Polukhina et al.,

2016). The xanthophyll cycle is one of the well-known non-photochemical quench-

ing mechanisms to dissipate excess energy as heat under high light conditions.

However, the interconversion of violaxanthin and zeaxanthin in the cycle is a slow

process, leading to delayed adaptation to changing light thus causing suboptimal

photosynthetic efficiency (Kromdijk et al., 2016). Another metabolic process that

is known to be active under high light conditions is the photorespiratory path-

way and has been experimentally recognised in plants as a potentially important

light stress response to dissipate excess reducing equivalents and energy (Voss

et al., 2013). Although the process of photorespiration is an energy expensive

process because it oxidizes NAPDH, the overall effect of photorespiration reduces

the photon yield (Nogales et al., 2012). Alternatively, the excess energy can also

be handled by increased flux in metabolic cycles operating in different part of

metabolism. These cycles involve either the conversion of NADPH into NADH in-

volving transhydrogenase-like reactions or hydrolysis of ATP. In this way, growth

could be maintained at its optimal rate while preventing photo-damage.

6.1.2 Metabolic cycles for energy dissipation

Energy dissipating metabolic modes are sets of reactions operating in a metabolic

system, whose net stoichiometry either hydrolyses ATP or oxidises a reductant

while the overall net change of the process is only the absorbtion of energy with no

net involvement of any other external metabolites other then H2O for ATP hydroly-

sis and O2 for NADPH oxidation. They include pathways with reactions operating

in cyclic manner such that the cycle dissipates energy but without any net anabolic

or catabolic transformation (Gebauer et al., 2012). They can also be defined as a

set of two oppositely directed reactions that operate to achieve no change other
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than dissipation of energy (Fell, 1997). Thus defined, the metabolic cycles would

be thermodynamically infeasible without pairing the cycle to a thermodynamically

favorable process that can drive it, such as sets of reactions producing ATP (Srid-

haran et al., 2015). As illustrated in the Figure 6.2, a metabolic cycle occurs when

two reactions in a network run simultaneously in opposite directions but without

causing any net transfer of the metabolites. However, the net effect of the cycle

transforms a cofactor (oxidising a reducing equivalent) thus dissipating energy in

the form of heat (Stein and Blum, 1978; Schwender et al., 2004). For example,

if chloroplastic fructose bisphosphatase and 6-phosphofructokinase operate simul-

taneously the net stoichiometry of them results in hydrolysis of ATP, as shown

below.

F16BDEPHOS-RXN_Plas:

1 FRUCTOSE-16-DIPHOSPHATE_Plas -> 1 FRUCTOSE-6P_Plas + 1 Pi_Plas

~

6PFRUCTPHOS-RXN_Plas:

1 FRUCTOSE-6P_Plas + 1 ATP_Plas -> 1 ADP_Plas + 1 FRUCTOSE-16-DIPHOSPHATE_Plas

~

-----------------------------------------------------------------------

ATP_Plas -> ADP_Plas + Pi_Plas

Biological function of metabolic cycles

Metabolic cycles are involved in regulation of different biochemical pathways in

cellular metabolism (Qian and Beard, 2006). Because of their role in maintaining

various metabolic functions such as cellular homeostasis, esterification and hydrol-

ysis of fatty acids, metabolic cycles are also labeled as a potentially important

motif of metabolic networks (Sridharan et al., 2015). Metabolic cycles involving

carbohydrate turnover have been widely reported in plant tissue although with

less clarity about the extent of their occurrence, mechanism of actions and func-

tions (Alonso et al., 2005). Based on isotopic labeling experiments, Whittaker and
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Figure 6.2: Patterns of occurrence of energy dissipating nodes. In all of the
nodes represented, there is no net change in the production and consumption
of the metabolites A and B but the cycles are driven either by hydrolysis of
ATP with water or the oxidation of NADPH by O2. Since the light reactions
use photons to generate ATP with the release of water and NADPH with
the release of O2, these cycles can couple with the light reactions to absorb
photons with no other net change.
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Botha (1997) have suggested that between 12-40 percent of sucrose synthesised is

re-hydrolysed to glucose and fructose in Saccharum officinarum (sugarcane). The

process involves metabolic cycles which operate by the hydrolysis of ATP making

it energetically expensive. Further, it has been proposed that removal of these cy-

cles might lead to improved sucrose accumulation and agricultural yield (Rohwer

and Botha, 2001).

Approaches being used to identify metabolic cycles

One approach for identifying potential metabolic cycles in metabolism has been

the use of elementary modes analysis. This has been used successfully in vari-

ous small and medium sized models to identify energy dissipating cycles. Rohwer

and Botha (2001) used the concept with a small model of sugarcane to find 14

elementary modes, 6 of which were metabolic cycles. Similarly, Teusink et al.

(2006) used elementary mode analysis in a genome scale model (643 reactions) of

Lactobacillus plantarum to identify 28 potential cycles consuming ATP. Another

closely related method is the Petri net theory (Chaouiya, 2007), which is based

on minimal T-invariants. The method was used by Koch et al. (2005) to identify

substrate cycles in sucrose metabolism in potato tubers. Similarly, a medium sized

model of A. thaliana was used to compute elementary modes to investigate the

change in metabolism with the availability of light and further identify reactions

involving redox and energy metabolism (Beckers et al., 2016).

Following sections will discuss the methods used in this analysis which are pri-

marily based on a reaction correlation coefficient based metabolic tree (Poolman

et al., 2007), recursive calculation of alternate solutions using mixed integer linear

programming (Lee et al., 2000) and light scan analysis. Later the results and dis-

cussion from the investigation of energy dissipating mechanism will be presented.

6.2 Methodology

6.2.1 Identifying a photon absorbing core model

In order to carry out a focused analysis of energy dissipation mechanism and reduce

the complexity of using GSMs, the models were condensed to photon absorbing
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core model. For this all the exchange reactions were removed to get a closed system,

with no mass transfer across the system boundary. Then the reactions that cannot

carry flux at the steady state were identified (section 2.1.4) and removed. The

remaining reactions were isolated as a subsystem and the correlation coefficients

between all reactions were calculated. Finally, all reactions that have some degree

of correlation with the photon consuming reaction (the manually added reaction

to represent input of light in the system) were identified, and separated as a core

model. These are primarily the reactions that are assumed to be active under light

conditions, and are therefore, potentially involved in various energy dissipation

processes.

6.2.2 Energy dissipating nodes in correlation tree

A reaction correlation coefficient based metabolic tree can be used to visualise

and interpret the function of sets of reactions (Poolman et al., 2007). The set of

reactions that cluster together in such tree are more likely to operate together and

have similar biological significance compared to others in the adjoining clusters.

Here the photosynthetic core model was used to generate a metabolic tree rep-

resenting the relationship between reactions. In such a metabolic tree, the root

node represents the complete model while each leaf node represents a reaction.

Combinations of leaf nodes which descend from a common parent node represent

a unique subsystem of reactions representing a metabolic module, referred here as

sibling nodes. All sibling nodes were isolated as a separate subsystems and the

net interconversions of metabolites in such systems were evaluated. The nodes in

which the net stoichiometry results in either the hydrolysis of ATP or oxidation of

reductants (functioning similarly to the nodes shown in Figure 6.2) were identified

as energy dissipating nodes.

6.2.3 Computing energy dissipating modes using MILP

A module from IBM-CPLEX (see section 2.1.7) was used to solve mixed integer

linear programming problems to find all combinations of reactions in the photon

absorbing core model, as alternate solutions. First the MILP problem shown in

Equation 6.2.1, was set with objective to minimise the sum of total reaction flux
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in the model. A constraint was set on the photon transport reaction such that it

can carry only positive flux, forcing the system to use some photon energy. The

MILP problem was then repeatedly solved and resulting multiple optimal solutions

collected as a dataset. Each alternate solution will consist of a combination of

reactions that could use the photon to generate the energy components using

either light cyclic or light non cyclic reactions, and consume it internally, thus

acting as potential energy dissipation modes. Also, the minimisation as objective

function will force the system to return a minimal possible solution set, making

them more likely to operate as metabolic cycles. Further, as each solution set

corresponds qualitatively to an elementary mode, the nullspace method was used

to identify which of the alternate solutions are also elementary modes.

minimise : v

subject to

{
Nv = 0

vν > 0

(6.2.1)

The objective is to minimise the sum of the total reaction flux, v, subject to the

following constraints:

• Nv = 0 defines steady-state similar to normal LP problem, v is the vector

of all fluxes

• vν > 0 defines the constrain to the photon transporter forcing it to carry

positive flux.

6.2.4 Integration of proteomics data

Proteomics data, with amounts of protein expressed as counts for respective genes

associated with reactions in the model (see section 2.1.8), under low and high light

conditions, was used for comparison with modelling results. All the data used in

this analysis was kindly provided by Dr. Chris Baker from the University of Cali-

fornia, Berkley. Briefly, the data for low light condition was gathered from plants

grown at 8 hour photo period exposed to 200 mm of photon m−2 s−1. Similarly,

the data for high light condition was gathered from plants grown at 8 hour photo

period exposed to 800 mm of photon m−2 s−1. The maximum rate of photosynthe-

sis was found to be nearly 3 times higher under high light conditions. Since we are

interested in finding out which of the reactions are more likely to be active under
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high light conditions, the protein expression data under high light conditions was

integrated with the model for comparative analysis.

Proteomics expression can be used as a qualitative indicator of the metabolic ac-

tivity. Thus for each reaction, the corresponding genes were identified and mapped

to their respective protein count. In the case of many to one or many to many

relationships between genes and reactions, the gene with highest protein count was

considered for the comparison. The energy dissipating nodes and modes having

positive protein expression for all reactions involved in the node or mode, were

identified and further evaluated for their biological significance.

6.2.5 Light scan analysis

To study the responses of reactions in the model to changing light conditions,

equation 6.2.2 was repeatedly solved with equal increment of photon flux at fixed

steps, until the the system was saturated and responses of the reactions remain

unchanged. As the production of biomass by plants changes according to the

intensity of light, this analysis sets a open flux bound in the biomass reactions

to allow them to increase or decrease according to metabolic activity. Additional

constraints as defined in (Poolman et al., 2013) were also included in the equation

to represent biological conditions.

minimise : |v|

subject to



Nv = 0

vν = ν

vi..j ≥ ti..j
vATPase = ATPase

vLightNonCyc ≥ vLightCyc

vCarboxylase + vOxygenase = c

vEDrxn = 0

(6.2.2)

where, the additional constraints vi..j ≥ ti..j are imposed to set a flux bound

to biomass reactions such that they can carry flux great or equal to the amount

measured experimentally. vCarboxylase + vOxygenase = c sets a arbitrary constant

flux c to sum of RuBisCO reaction. Further, vEDrxn = 0 constrains a flux of

zero to all unique reactions involved in energy dissipating modes identified from
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MILP method. Energy dissipating reactions which are involved in central carbon

metabolism or are essential to produce biomass components are excluded from this

constraint. The dataset thus obtained was used to identify reactions which respond

to the changing light conditions, as discussed in Section 4.2.2, and hence show the

potential for absorbing additional light energy by changing biomass composition

in the absence of other dissipating mechanisms.

6.3 Results from GSM of A. thaliana

Out of 2641 reactions in the A. thaliana GSM, 1038 were identified to be capable

of carrying a steady state flux under light conditions and thus have some degree of

correlation with the photon transport reaction. This set of reactions were separated

as photon absorbing core model. The core model is presented in Appendix C.

6.3.1 Energy dissipating nodes - Correlation Tree Anal-

ysis

A metabolic tree was generated for the photon absorbing core model. The tree

could be divided into 348 sibling nodes such that all the leaf nodes in the tree are

attached to common immediate parent node (see Figure 6.3). In total 56 of these

sibling nodes were identified as potential energy dissipating nodes. These nodes

span the length of 2-4 reactions. 4 of the nodes were localised in the chloroplast,

one in the mitochondria, one in the peroxisome and 49 in the cytosol.

Nodes with increased protein expression

9 of the nodes shown in Figure 6.4, have all of their reactions with increased

protein expression under high light conditions. 27 of the remaining nodes have at

least one reaction in them with high protein expression while no protein expression

could be found for reactions involved in other 20 nodes. A comprehensive list of

all the nodes with the function of reactions involved and their respective protein

expression profile is presented in Appendix B Table B.1.
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Figure 6.3: Metabolic tree of all the energy dissipating nodes. The nodes
for which all the reactions have positive protein expression are highlighted,
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involved in oxidation of NADPH. Network diagram of these nodes are pre-
sented in Figure 6.4.
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6.3.2 Alternate energy dissipating modes - MILP

In total 231 potential energy dissipating modes that could consume photon and

dissipate the energy were identified from the MILP method. 211 of these were also

elementary modes. All of these modes were formed by combinations of 237 unique

reactions and each involved between 4 to 27 reactions. These modes were localised

either in cytosol, chloroplast or spanned across both of the compartments.

Modes with increased protein expression

In total 9 of the modes have all the reactions in them with increased protein

expression under high light conditions. Figure 6.6 shows network diagrams of these

9 modes. Overall 53 reactions, out of 237 that participate in energy dissipating

nodes, have a positive expression under high light conditions and 37 of them have a

larger amount of protein as compared to low light conditions. A comprehensive list

of all the reactions involved in these energy dissipating modes, frequency of their

occurrence, their metabolic functions and respective protein expression profiles is

presented in Appendix B Table B.2.

6.3.3 Light Scan Analysis - increase in biomass com-

ponents

In total 198 reactions, out of 237 that are involved in one of the energy dissipating

modes identified from MILP method, were set to a flux of zero. The remaining 39

were essential for biomass synthesis.

The response curves of some of the reactions which respond to changing light is

shown in Figure 6.7. The whole plot can be divided into different regions according

to the points at which some group of reactions saturates, a normal photosynthetic

metabolism can be seen in region A. With further increase in photon flux the reac-

tions involved in the starch synthesis pathway were turning on, as shown (region

B). After the flux through the starch synthesis saturates, there is a brief increase

in activity of glucose-6-phosphatase reaction in region C associated with increased

flux in the GLC biomass transporter. The flux through sucrose phosphatase in-

creases in region D, leading to subsequent increase in export of sucrose. The

sucrose-6P used by the phosphatase reaction is produced by sucrose phosphatase
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Figure 6.7: Results from light scan analysis in the Arabidopsis model,
demonstrating increase in biomass components. Negative flux indicate ex-
port of the biomass components from the system. The plot can be divided
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reaction which uses fructose-6-phosphate as a substrate along with UDP glucose.

In the region E, after the sucrose phosphatase reaction saturates, the UDP glucose

is used by the UDP dependent cellulose synthase reaction to produce cellulose.

However, the UDP glucose used by the cellulose synthase reaction is produced by

UDP-glucose pyrophosphorylase which uses the glucose 1-phosphate along with

UTP to produce UDP glucose. The glucose 1-phosphate used here is produced by

the isomerase reaction. The fructose 6-phosphate is generated in the chloroplast

by the Calvin cycle and transported to the cytosol to be used by glucose, sucrose

and cellulose synthesis pathways thus increasing their export under increasing light

conditions.

Removing reactions involved in energy dissipation mechanism helped to improve

the function of central carbon metabolism thus contributing to increased produc-

tion of biomass components. Further, it should be noted that even though 198 re-

actions actively participating in energy dissipation mechanism were removed from

the model, processes such as the xanthophyll cycle and other essential reactions

(including 39 reactions that were excluded from removal) are are still operating

in the network thus preventing plants from the vulnerability of damage from high

light.

6.4 Results from Chlamydomonas model

Out of total 1865 reactions in the C. reinhardtii model, 626 were separated as a

photon absorbing core model.

6.4.1 Energy dissipating nodes - Correlation Tree Anal-

ysis

The metabolic tree was generated for the core model. The tree could be divided

into 220 sibling nodes out of which 34 subsystem were identified as energy dissipat-

ing nodes. Out of these, 3 of them were localised in chloroplast, 2 in mitochondria

and 29 in cytosol. Metabolic functions of the reactions in each mode and the part

of metabolism they belong to are presented in Table 6.9.
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Comparison of ED nodes obtained from A. thaliana and C. reinhardtii model

shows that 12 of the nodes are common in both the models and are listed below.

The first 3 nodes in the list were also found to have increased protein expression

in proteomics data analysis in the A. thaliana model. These nodes are highlighted

with green color in Figure 6.9. The remaining 8 modes are highlighted with light

brown in Figure 6.9.

[’F16BDEPHOS-RXN_Plas’, ’6PFRUCTPHOS-RXN_Plas’]

[’GLUTATHIONE-REDUCT-NADPH-RXN_Cyto’, ’GLUTATHIONE-PEROXIDASE-RXN_Cyto’]

[’SULFATE-ADENYLYLTRANS-RXN_Cyto’, ’ADENYLYLSULFATASE-RXN_Cyto’]

[’MYO-INOSITOL-1OR-4-MONOPHOSPHATASE-RXN_Cyto’, ’MYO-INOSITOL-1-KINASE-RXN_Cyto’]

[’RXN-5647_Cyto’, ’CHOLINE-KINASE-RXN_Cyto’]

[’RXN-12197_Cyto’, ’UMPKI-RXN_Cyto’]

[’RXN-12195_Cyto’, ’CDPKIN-RXN_Cyto’]

[’RXN0-5462_Cyto’, ’GDPKIN-RXN_Cyto’]

[’RXN-12196_Cyto’, ’UDPKIN-RXN_Cyto’]

[’PALMITOYL-COA-HYDROLASE-RXN_Cyto’, ’RXN-9623_Cyto’]

[’2.7.1.139-RXN_Cyto’, ’RXN-8730_Cyto’]

6.4.2 Energy dissipating modes - MILP

In total 191 alternate solutions were identified out of which 177 were also elemen-

tary modes. These modes were formed by combinations of 242 unique reactions

and localised either in the chloroplast, the cytosol or spanned across both of these

compartments.

6.5 Discussion

The response of plants and algae to high light conditions requires adjustment in

capacity to either use the absorbed excitation energy through photochemistry and

or dissipate the excess energy. This investigation was particularly focused to com-

prehensively identify the full range of potential energy dissipating cycles occurring

in different part of metabolism in GSMs. Using correlation coefficient analysis

and MILP, it was possible to systematically identify all possible combinations of

reactions in the model metabolic networks that could collectively function to dis-

sipate excess energy by hydrolysis of ATP or oxidation of equivalent reductants.
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Figure 6.9: Metabolic tree of energy dissipating nodes in the C. reinhardtii
model. All nodes that are highlighted are also present in the A. thaliana
model. Nodes for which have positive protein expression in A. thaliana are
highlighted in green.
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These processes could operate in different cellular compartments and cover reac-

tions from various textbook-defined metabolic pathways. For example the cycle

involving F6P and FBP (Figure 6.4 EDN 44) is part of both glycolysis and gluco-

neogenesis, likewise the ascorbate-glutathione cycle (Figure 6.4 EDN 52) involving

production and degradation of glutathione is associated with the metabolism of

glutamate cysteine and glycine. In this regard, the analysis has been able to predict

novel function and a close interaction between reactions with seemingly unrelated

functions, simply based on their involvement in either consumption or production

of energy components.

A common feature noted in energy dissipating cycles that are involved in the

hydrolysis of ATP, identified from both methods, is that these nodes and modes

are usually made up of two non-equilibrium reactions involving a kinase and a

phosphatase for which a product of one is the substrate to the other. If both

reactions in such a cycle are assumed to operate at the same rate then there is no

net flux of the metabolites but the metabolic loss of energy as heat. Similarly, the

cycles involving oxidation of reductants include a pair of oxidase and reductase

reactions running in opposite direction with the net effect of oxidising NADPH.

The energy dissipating nodes identified from the correlation method are always

localised in one single compartment while some of the modes identified from the

MILP methods span two compartments and are connected by metabolite trans-

porters. Some of the cycles identified from both the methods are more commonly

known and have experimental evidence (Geigenberger and Stitt, 1991; Rohwer and

Botha, 2001; Koch et al., 2005) of their in vivo activity while some others have

been reported from computational analysis. The methods used here have been

able to identify all those reported previously and further propose additional cycles

with a potential function in energy dissipation. In total 7 out of 56 nodes in case

of the A. thaliana, and 6 out of 34 in case of the C. reinhardtii, identified from

the correlation method, have been reported previously in the literature. As it is

difficult to extensively characterise all the cycles identified from two methods, pro-

teomics data obtained under high light conditions was used here to qualitatively

compare which of the cycles identified from the model are more likely to occur in

vivo.
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6.5.1 Experimental validation of results with proteomics

data

The metabolic fluxes are the end result of the interplay of gene expression, protein

concentration, protein kinetics and metabolite concentrations and thus represent

the metabolic phenotype of the organism (Winter and Kromer, 2013). Integration

of proteomics data into GSMs can give useful insight into conditional changes in

the metabolic activity and hierarchical regulation of metabolic fluxes by represent-

ing their control over the activity of enzymes(Yizhak et al., 2010). In this regard,

use of proteomics data to identify the reactions more responsive under high light

condition is a logical choice. Moreover, it has been concluded that proteomics

data constrain GSMs more close to a physiological state then other omics data

(Großeholz et al., 2016). Similarly, the integration of state-specific protein data in

a GSM have shown to improve prediction accuracy of the model (Simons et al.,

2014). Since, the data used in this study has been generated under high light

conditions, when photosynthetic rates were observed to be maximum, it is ideal

to be used for investigation of potential energy dissipating modes under high light

conditions.

By using the proteomics data as a basis for defining activity of reactions, have

suggested a shift in metabolism that would not be predicted on the basis of obser-

vations of input and output rates alone. Thus the proteomics data analysis have

been useful to suggest with more certainty that at least 9 of the nodes identified

from the correlation analysis and 10 of the modes from the MILP analysis are

likely to occur in vivo. Moreover, some of the modes identified from this analysis

have already been validated experimentally.

Experimental evidence support the role of GLC-G6P cycle (EDN 29 Figure 6.3

and 6.5 ) in carbohydrate metabolism, for maintaining the level of glucose (Stein

and Blum, 1978). The significance of the cycle was also demonstrated using the

concept of elementary mode in a genome scale model (643 reactions) of Lactobacil-

lus plantarum (Teusink et al., 2006). The 28 energy dissipating cycle identified in

the analysis were attributed to their function in uncoupling catabolic ATP pro-

duction and anabolic ATP consumption specially under the conditions when their

level is high.
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The cycling of F6P-FBP (EDN 31, EDN 44 Figure 6.3) is known for recycling

metabolites in the glycolysis and has been observed experimentally in yeast cells

(Hers and Hue, 1983). Similarly, the cycling of Pyr-PEP (EDN 43 Figure 6.3) was

reported to have a role in carbon flux distribution mainly by connecting different

pathways in carbon metabolism responsible for catabolism, anabolism and energy

supply in bacteria (Sauer and Eikmanns, 2005).

The metabolic cycle of sucrose as shown in EDN 14 (Figure 6.3, 6.5) has previ-

ously been reported in different plant species. From an experiment in germinating

castor-oil-plant seed, Geigenberger and Stitt (1991) have shown that the metabolic

cycle involving simultaneous synthesis and degradation of sucrose allow the change

in pool of sucrose with very minimal change in concentration of sucrose and other

metabolites. Similarly, experimental work on sugarcane, reported by Rohwer and

Botha (2001), showed a increase in conversion of hexose to sucrose, increasing its

overall accumulation, in response to an increase in activity of the fructose uptake

and decrease in activity of hexokinase reaction. Their analysis of a smaller model

of sugarcane, also shows that 6 elementary modes, out of 14 total, were metabolic

cycles involving sucrose metabolism, showing significant control over sucrose ac-

cumulation (Rohwer and Botha, 2001). Likewise recycling of sucrose involving,

sucrose invertase, sucrose phosphate synthase, sucrose phosphatase has also been

reported to play an important role in sucrose accumulation in potato tubers (Koch

et al., 2005).

While the method used here for protein data integration has the merit that re-

actions associated with over-expressed proteins will tend to be favored over those

with under-expressed genes, and its application appears to yield biologically mean-

ingful results (described above), a complicating factor in this work is the presence

of isozymes, multi-subunit enzymes and relatively sparse information concerning

compartmental targeting of isozymes. These aspects could be considered for future

developments of the study to further improve the predictability of the model.
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6.5.2 Broad applicability of the method

Most of the methods reported in literature to determine metabolic cycles were

primarily based on elementary mode analysis. But as pointed out previously, it

is challenging and computationally expensive to compute all possible elementary

mode in larger models. This challenge has been addressed in parts by targeting a

specific metabolite or cofactor such as only those consuming ATP (Gebauer et al.,

2012). Nevertheless the approach does not represent the relationship between dif-

ferent cofactors such as the modes which could consume both ATP and NADPH.

The MILP method used here overcomes this problem as it does not require a spec-

ified boundary to limit the number of reactions and or limit the type of reactions

that could form a solution set. Thus the method is able to compute all possible

combinations of reactions involving individual or combinations of cofactors. The

modes identified here are of various length, some only hydrolysing ATP, some only

oxidising NADPH and some doing both. Moreover, as the method is allowed to

find a multiple solution set with the same or different objective function, it can

be assumed that the computed solution set contains all possible combinations of

solutions. Also, because minimisation is used as the objective function, the algo-

rithm will tend to return a minimal set of reactions in a particular solution that

are thus more suited to function as a metabolic cycle. Similarly, the correlation

method does not require a specified boundary as to how many reactions could

cluster. The program used here allows clustering of all reactions simply based on

their correlation and thus they are more likely to have similar biological functions.

The fact that all of these nodes only have between 2-4 reactions, makes them more

suitable candidates to operate as metabolic cycles.

6.5.3 Possibilities of in vivo activity

All the energy dissipating modes identified in this study can be catagorised as

being distinct from one another based on their activity and mode of operation.

They represent a continuum of photoprotection responses and are critical to the

maintenance of the photosynthetic apparatus under conditions of excess light. The

operation of these modes could be controlled by various regulatory factors in vivo,

and it is difficult to determine their activity and effectiveness simply based on
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stoichiometric analysis. On the other hand, modes involving many reactions can

be assumed to be inactive as a result of down-regulation of at least one enzyme

involved. This assumption can also be supported by the fact that only few of the

energy dissipating cycles in Arabidopsis (9 from each analysis) have reactions with

positive protein expressions. Even if all enzymes are assumed to be active, the

flux through these cycles could be small or negligible as a result of shared flux in

a big network (Gebauer et al., 2012). In this regard, the ED nodes identified from

the correlation analysis are more likely to occur in vivo as they only involve 2-3

reactions in the cycle.

Even though the biological functions of all the energy dissipation modes cannot be

established without further experimental evidences, from the modelling point of

view this investigation have successfully listed all potential candidates that could

occur in different part of metabolism. This could be used as a guide to design

new experiments. Moreover, the investigation demonstrates the applicability of

two new methods developed here to study structural properties of a metabolic

network and further explore its capabilities.

6.5.4 Increase in biomass composition after removing

reactions involved in energy dissipation

The knowledge of mechanism that are employed by plants during environmental

fluctuations can provide novel targets for improving crop yield (Raines, 2011). Ex-

perimental results that demonstrate improved growth or biomass production after

engineering metabolic system involved with energy dissipation are being published

regularly. More recently, Kromdijk et al. (2016) have shown that by increasing

the amount of PSII subunit and accelerating the interconversion of violaxanthin

and zeaxanthin improves the production of biomass by 15% in natural conditions.

Similarly, manipulation of the xanthophyll cycle, involved in an energy dissipating

cycle, has been shown to improve the adaptation to change in light intensity in

the tobacco plant (Ruban, 2017).

In this analysis, after all the reactions involved in energy dissipating modes (all

unique reactions involved in alternate solutions) were removed from the Arabidop-

sis model, a significant increase in the production of biomass was observed (Figure
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6.7). This indicates that the 198 reactions in the case of Arabidopsis could be the

potential knockout targets to help improve productivity in plants. As shown in

the Figure 6.8, the biomass components that show increase in flux with increasing

photon flux are all the glucose derivatives and are produced primarily using central

carbon metabolic reactions. The observation strongly suggest the removal of the

energy dissipating reactions from the model could improve the performance of cen-

tral carbon metabolism and direct the metabolic flux to convert CO2 into biomass.

Overall, this study presented two robust methods that were used to identify all

possible energy dissipating metabolic cycles in the GSMs. Further, with the inte-

gration of proteomics data, the analysis have been able to propose 19 metabolic

cycles which are most likely to occur in vivo and dissipate excess energy under

high light conditions. Similarly, based on the light scan analysis results, the study

propose that removal of reactions involved in energy dissipation mechanism helps

to improve the performance of central carbon metabolism and hence improve the

production of biomass in plants.
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Chapter 7

General summary

7.1 Overview of results obtained

In this thesis, newly constructed GSMs of A. thaliana and C. reinhardtii were

used to study different aspects of plant and algal photosynthetic metabolism.

The models were developed using the latest annotations of the respective BioCyc

databases, thus including large coverage of the genomes and hence they represent

the metabolic characteristics of the organisms in more detail compared to their

predecessors. Further, metabolic modelling approaches such as elementary mode

analysis (Chapter 5) FBA (Chapter 5, 4 6), reaction correlation coefficient analy-

sis (Chapter 6) and MILP (Chapter 6) were used to study metabolic fluxes under

different light conditions to explore the potential of the metabolic networks in

achieving important biological functions.

Chapter 3, describes the construction of fully compartmentalised GSM of A.

thaliana and C. reinhardtii. An iterative process of curation was carried out with

both the models to make sure that the direction and reversibility of all reactions

comply with the law of mass and energy conservation. The models were checked

for their ability to produce biomass components under both heterotrophic and

phototrophic conditions in A. thaliana model and also under mixotrophic condi-

tions in case of the C. reinhardtii model. The resulting A. thaliana model has

2588 reactions and 2481 metabolites, divided into 5 compartments according to

the information obtained from Cheung et al. (2013). The C. reinhardtii model

has 1858 reactions and 1931 metabolites, localised into 4 compartments based on

152



information inherited from Chang et al. (2011). Comparative study of the models

with their predecessors have demonstrated that it is important to include newer

genome annotations in the model reconstructions as they influence the structure

of the resulting models and hence their predictive capacity. The analysis has also

emphasised that only a small fraction of reactions in the model, including cen-

tral carbon metabolism, are required to support its growth. Additionally, the

chapter also describes the methods and results for experimental measurements of

biomass components of Chlamydomonas under mixotrophic conditions, using a

torus photobioreactor (Takache et al., 2012). The results show that the C. rein-

hardtii produces more biomass components under mixotrophic condition although

the proportions of individual biomass components were comparable to its pho-

totrophic growth.

Chapter 4 was focused on the study of metabolic responses of the models with

different energy and carbon sources. The A. thaliana model was analysed under

heterotrophic and phototrophic conditions. The analysis of reaction fluxes have

demonstrated the capacity of the model to render naturally occurring regulatory

mechanisms such a thioredoxin regulation of light active and dark active reactions,

without explicitly setting such constraints. The analysis under changing light con-

ditions highlighted the shift in control of energy metabolism from mitochondrial

oxidative phosphorylation to chloroplastic photophosphorylation when the avail-

ability of light increased. Under such situations the redox transfer between the

compartments was taken care by a shuttle mechanism. As the input of photon

flux increased, the reactions involved in the energy dissipation mechanism were

observed to carry more flux. An unique combination of reactions involving the

xanthophyll cycle with the ascorbate glutathione cycle and a cycle involving in-

terconversion of glutamate-glutamine were identified to be involved in oxidation

of excess reductant energy under high light conditions. Moreover, the analysis led

to a discovery of a pattern in the network that a group of reactions belonging to

different parts of metabolism could combine together to function to utilise excess

energy in the system. The observation exhibited a scope for further research in

energy dissipating cycles in the network. The analysis of C. reinhardtii model

under mixotrophic metabolism supports previous observations that the organism

is capable of using both CO2 and acetate to support its growth. The analysis in

this chapter has also illustrated the importance of central carbon metabolism in
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supporting the growth of organisms.

Chapter 5 was centered on the study of the effects of knock-out and deregulation

of the Calvin cycle enzymes in the A. thaliana model. The FBA based analysis on

the model revealed that the a feasible solution is possible after removal of reactions

catalysed by SBPase, FBPase and GAPdh, indicating that such knockouts can be

potentially viable in vivo. The observations from model analysis are consistent

with the experimental results which show that, albeit with significantly impaired

phenotypes, single knockout mutants of these enzymes are viable. Moreover, the

analysis on the GSM was useful to investigate the rearrangement of the fluxes

under the knockout conditions. The analyses have suggested alternate reactions

that are capable of supporting the metabolism in the absence of the knocked out

reactions. It has emphasised that SBPase and FBPase have the capacity to com-

pensate each other’s activity and thus the network is able to maintain all fluxes

to biomass components even when one of them is removed. Moreover the analysis

also proposed a novel role of the dark active, tranaldolase reaction, in day time

metabolism. The reaction was not present in the model flux distributions under

light conditions and is known to be active only under the dark condition. However,

it was carrying a positive flux under both SBPase and FBPase knockout condi-

tions. Notably under all knockout conditions, the major changes in the fluxes

were observed among the Calvin cycle reactions in the chloroplast and some of

their isoforms in the cytosol which further illustrates its importance in supporting

photosynthetic metabolism. The deregulation of the SBPase and FBPase in dark

metabolism suggested that such change will generate a lot of reducing potential in

the system which can be lethal to the organism.

Chapter 6 followed up the investigation of metabolism under high light condi-

tions undertaken in Chapter 4 explicitly focusing on identification of all possible

combinations of reactions in the model that can potentially involve in energy dis-

sipation mechanisms. For this, a photon absorbing core model was identified by

filtering the reactions which showed positive correlation with the photon trans-

porter. The core models for both A. thaliana and C. reinhardtii contained less

than half of the reactions from their respective GSMs. All the reactions present

in the core model are capable of carrying a steady state flux and thus are likely to

respond under high light conditions. The aim was to identify the sets of reactions
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that can operate simultaneously with net stoichiometry of either hydrolysing an

ATP or oxidising equivalent reductants (NAD, NADPH). Two different approaches

were then used to identify such energy dissipating cycles. In the first approach,

a correlation coefficient based metabolic tree was generated. The reactions which

are closely correlated and thus clustered together as children of a parent node

were isolated and evaluated for their ability to operate as the energy dissipating

node. In total, 56 such cycles were identified in the Arabidopsis model and 34 in

the Chlamydomonas model. In the second approach, MILP was used to identify

all possible alternate routes through the network that could consume a photon,

generate energy through the activity of either cyclic or non-cyclic photophospho-

rylation and subsequently consume the ATP or NADPH generated without a net

carbon conversion. In total, 231 such energy dissipating modes were identified

in Arabidopsis model, 211 of which were also elementary modes. In the case of

the Chalamydomonas model, 191 such energy dissipating modes were identified

out of which 171 were also the elementary modes. Moreover, proteomics data

obtained under high light conditions was integrated with the model to identify

which of the nodes and modes identified from this study are more likely to occur

in vivo. In total, 9 nodes and 10 modes identified from this analysis are found to

have increased protein expression. Further, when the reactions involved in energy

dissipation mechanisms identified from the analysis were removed, the model was

able to predict an improvement in performance of the central carbon metabolism

leading to an increase in production of biomass components.

Hence, while establishing some of the well known properties of photosynthesis,

the study presented here has been able to predict new features of the metabolic

networks and propose further studies which could help improve the productivity

of plants and algae. Moreover, the study has also demonstrated the potential of

using metabolic modelling tools in new areas of photosynthetic research.

7.2 Scope of the model and methods devel-

oped during this study

Analyses presented here have demonstrated that the newly constructed GSMs are

capable of correctly representing well known biological phenomena such as thiore-
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doxin regulation without explicitly setting such constraints. This shows their po-

tential to be used in studying other regulatory and mechanistic properties of the

organism. Accordingly, the ability of the model to correctly predict viability of

Calvin cycle reactions knockout mutants demonstrate that the model can easily be

adapted to study gene essentiality or mutational properties in other parts of the

metabolic network. Similarly, since the models already represent the entire genome

of the organism and contain all the reactions belonging to secondary metabolism

it can easily adapted to study secondary metabolic properties by including addi-

tional metabolite exporters.

It would be worthwhile to design experiments to test the activity of transaldoase

in day time metabolism, as predicted by the model. Moreover, additional experi-

mental data such as biomass composition and other photosynthetic measurements

can also be integrated in the model to more accurately predict phenotypic impact

of such knockouts. Similarly, the proteomics data analysis has been useful to indi-

cate which of the energy dissipating cycles identified from the modelling analysis

are more likely to occur in vivo. However, this is not a proof that such mechanism

exist in reality. It would be worthwhile to design new experiments to test which

of the metabolic cycles identified here are active under real biological conditions.

This would help develop newer understanding of photo-protection mechanism in

these organisms.

Additionally, the modelling techniques employed during this study such as use

of correlation coefficients to identify the photon absorbing core model can be used

to generate core models to represent other metabolic characteristics. Likewise, the

method and modules developed to identify energy dissipating cycles, can easily be

adapted for similar analysis on other photosynthetic organisms.

7.3 Limitations of the model and future de-

velopments

Although the GSMs developed here cover detailed metabolic characteristics of the

organisms and have been able to make interesting predictions, there are certain

aspects which could be further improved. For example the subcellular localisa-

156



tions for both the models were adapted from their predecessors. Although there

is much less experimental data to support accurate localisation of many reactions

in the metabolism, more updated information for Arabidopsis has been published

recently (Hooper et al., 2017) and can be adapted for future studies. Similarly,

the tools such as PredAlgo (Tardif et al., 2012) can be used to further identify

compartmental localisation in Chlamydomonas.

Metabolite transporters are an integral part of metabolism; however there are

relatively fewer studies about the mechanisms of intercompartmental transporters

in both plant and algal species. The analysis here has identified that transporters

of energy components in particular influence the metabolic responses of the model.

For example the ATP-ADP-Pi antiporter was observed to couple with ATP hy-

drolysing reactions and act as a spurious energy consuming cycle. Thus future

development of the models can consider these issues in more detail.

Although, the models include secondary metabolic reactions more emphasis was

given on the study of primary metabolism in this thesis. Thus, future development

of models can also focus on improving these aspects. Moreover, the plant leaf is

a complex organ and is composed of multiple tissues and cell types where each

tissue type has different metabolic characterists. There have been studies which

pieced together a tissue specific network of a plant species (Saha et al., 2011) but

it lacks the representation of interactions between different cell types. Future de-

velopments of the models can focus on developing cell or tissue specific model and

ultimately move towards developing whole organism models.

7.4 Conclusion

Research on plant and algal biology is aimed at improving their photosynthetic

productivity to address increasing demand for food and energy supplies. Metabolic

models have been useful tools to study behavior and complexity of biological sys-

tems. This study in particular has successfully demonstrated that metabolic mod-

els can be used as a framework to study metabolic phenotypes and generate pre-

dictions that will provide a guide to design new experiments with more certainty

of what to expect. Similarly, the study has also highlighted how metabolic mod-

els can be effectively integrated with existing experimental data and complement
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in developing our understanding of underlying properties of photosynthetic meta-

bolism and further explore its potential to achieve new functions. Moreover, this

study has been able to demonstrate that metabolic models are important tools for

integrative, multidisciplinary research (Moejes et al., 2017) and can contribute in

collaborative research projects like AccliPhot. It is hoped that the information

covered by the models, the modelling approaches developed and the predictions

made in this study will be translated into crop plants and help improve their

productivity.
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Töpfer, N., Caldana, C., Grimbs, S., Willmitzer, L., Fernie, A. R. and Nikoloski,

Z. (2013), ‘Integration of genome-scale modeling and transcript profiling reveals

metabolic pathways underlying light and temperature acclimation in Arabidop-

sis.’, Plant Cell 25(4), 1197–1211.

Trinh, C., Unrean, P. and Srienc, F. (2008), ‘Minimal Escherichia coli cell for the

most efficient production of ethanol from hexoses and pentoses’, Appl Environ

Microbiol. 74, 3634–3643.

Trinh, C., Wlaschin, A. and Srienc, F. (2009), ‘Elementary mode analysis: a

useful metabolic pathway analysis tool for characterizing cellular metabolism’,

Appl Environ Microbiol. 81, 813–826.

van Heck, R. G. A., Ganter, M., dos Santos, V. A. P. M. and Stelling, J. (2016),

‘Efficient Reconstruction of Predictive Consensus Metabolic Network Models’,

PLoS Comp. Biol 12(8), 1–21.

Varma, A. and Palsson, B. O. (1993), ‘Metabolic capabilities of Escherichia coli: I.

synthesis of biosynthetic precursors and cofactors.’, J Theor Biol 165(4), 477–

502.

Voss, I., Sunil, B., Scheibe, R. and AS., R. (2013), ‘Emerging concept for the role

of photorespiration as an important part of abiotic stress response.’, Plant Biol

(Stuttg) 15(4), 713–22.

Wagner, C. (2004), ‘Nullspace Approach to Determine the Elementary Modes of

Chemical Reaction Systems’, J. Phys. Chem. B 108, 2425–2431.

Walters, R. G. (2005), ‘Towards an understanding of photosynthetic acclimation.’,

J. Exp. Bot. 56(411), 435–47.

185



Wang, J., Yu, Q., Xiong, H., Wang, J., Chen, S., Yang, Z. and Dai, S. (2016),

‘Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness’,

PLoS One 11(5), 1–24.

Watson, M. R. (1986), ‘A discrete model of bacterial metabolism’, Comp. Appl.

Biosci. 2(1), 23–27.

Weber, A. P. and Linka, N. (2011), ‘Connecting the Plastid: Transporters of the

Plastid Envelope and Their Role in Linking Plastidial with Cytosolic Metabol-

ism’, Annu Rev Plant Biol. 62, 53–77.

Weise, S. E., Weber, A. P. M. and Sharkey, T. D. (2004), ‘Maltose is the major

form of carbon exported from the chloroplast at night.’, Planta. 218(3), 474–82.

Whittaker, A. and Botha, F. C. (1997), ‘Carbon Partitioning during Sucrose Ac-

cumulation in Sugarcane Internodal Tissue.’, Plant Physiol. 115(4), 1651–1659.

Wilhelm, C. and Selmar, D. (2011), ‘Energy dissipation is an essential mecha-

nism to sustain the viability of plants: The physiological limits of improved

photosynthesis’, J Plant Physiol 168((2)), 79–87.

Winter, G. and Kromer, J. O. (2013), ‘Fluxomics – connecting ‘omics analysis and

phenotypes’, Environmental Microbiology 15, 1901–1916.

Yeung, M., Thiele, I. and Palsson, B. O. (2007), ‘Estimation of the number of

extreme pathways for metabolic networks’, BMC Bioinformatics 8.

Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E. and Shlomi, T. (2010),

‘Integrating quantitative proteomics and metabolomics with a genome-scale

metabolic network model’, Bioinformatics 26(12), 255–260.

Yuan, H., Cheung, C. Y. M., Hilbers, P. A. J. and van, N. A. W. (2016), ‘Flux

Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and

Model Structure on Model Predictions’, Front. Plant Sci., 7, 537.

186



Appendix A

Knockout investigation -

experimental work

Homozygous mutant lines of each of the enzymes (SBPase, FBPase and GAPdh)

were identified and knockout was performed using T-DNA insertion method. The

growth of each mutants were observed and the phenotypic characters of each mu-

tants were studied. Figure A.1 shows the comparative growth of wild type and

mutant plants.
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Figure A.1: Experimental results for the knock-out Arabidopsis lines. All
plants are homozygous for the TDNA insertion. Each panel shows pictures
of 22 day-old plants. Scale bar 1cm. Col-0 is Columbia wild types, fbp-2 is
FBPase mutnant KO line 2, sbp-1 and sbp-2 are SBPase KO mutant line 1
and 2 respectively, gapb-1 is G3Pdh KO line 1. Pictures kindly provided by
Martina Zanella, ETH Zurich
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Appendix B

Energy dissipating reactions

Table B.1: List of reactions involved in energy dissipating nodes (separated
by lines) identified from correlation coefficient method (see Section 6.3.1) and
their functions based on BioCyc annotations. Prot Exp, states whether pro-
tein expression for the reaction increase; Sto, states if the net stoichiometry
of the node is involved in hydrolysis of ATP or oxidation of NADPH.

Reactions Function Prot Exp Sto

F16BDEPHOS-RXN Plas Calvin cycle Yes ATP

6PFRUCTPHOS-RXN Plas glycolysis Yes

GLUTATHIONE-REDUCT-NADPH-

RXN Pero

glutathione redox reactions Yes NADPH

1.8.5.1-RXN Pero hydrogen peroxide detoxification Yes

L-ASCORBATE-PEROXIDASE-

RXN Pero

ascorbate metabolism Yes

SULFATE-ADENYLYLTRANS-

RXN Cyto

sulfation pathway Yes ATP

ADENYLYLSULFATASE-RXN Cyto sulfur metabolism Yes

PEPDEPHOS-RXN Plas glycolysis Yes ATP

PYRUVATEORTHOPHOSPHATE-

DIKINASE-RXN Plas

glutamine biosynthesis Yes

RXN-3522 Plas hydrogen peroxide detoxification Yes ATP

RXN-3521 Plas hydrogen peroxide detoxification Yes

GLUTATHIONE-REDUCT-NADPH-

RXN Cyto

glutathione redox reactions Yes NADPH

GLUTATHIONE-PEROXIDASE-

RXN Cyto

glutathione redox reactions Yes

GLUTATHIONE-REDUCT-NADPH-

RXN Mito

glutathione redox reactions Yes

1.8.5.1-RXN Mito hydrogen peroxide detoxification Yes NADPH

L-ASCORBATE-PEROXIDASE-

RXN Mito

None Yes

F16BDEPHOS-RXN Cyto Calvin cycle Yes

6PFRUCTPHOS-RXN Cyto glycolysis Yes ATP

GLUTAMIN-RXN Cyto glutamine amidotransferase Yes ATP

GLUTAMINESYN-RXN Cyto glutamate-glutamine shuttle Yes

RXN0-5462 Cyto guanosine metabolism Yes ATP

GDPKIN-RXN Cyto guanosine ribonucleotides biosynthesis No

FRUCTOKINASE-RXN Cyto sucrose mobilization Yes

SUCROSE-PHOSPHATASE-RXN Cyto sucrose metabolism No ATP
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SUCROSE-PHOSPHATE-SYNTHASE-

RXN Cyto

sucrose metabolism No

SUCROSE-SYNTHASE-RXN Cyto sucrose degradation Yes

RXN-12196 Cyto pyrimidine biosynthesis No ATP

UDPKIN-RXN Cyto pyrimidine biosynthesis Yes

RXN-14217 Cyto guanosine metabolism No ATP

DGDPKIN-RXN Cyto guanosine deoxyribonucleotides biosyn-

thesis I

Yes

RXN-1124 Cyto ferulate metabolism No

RXN-10919 Cyto ferulate metabolism No ATP

RXN-8014 Cyto ferulate and sinapate biosynthesis Yes

SULFATE-ADENYLYLTRANS-

RXN Cyto

sulfation pathway Yes ATP

ADENYLYLSULFATASE-RXN Cyto sulfur metabolism No

RXN-12195 Cyto pyrimidine biosynthesis No

CDPKIN-RXN Cyto pyrimidine biosynthesis Yes ATP

RXN-10811 Cyto CoA metabolism No ATP

DEPHOSPHOCOAKIN-RXN Cyto CoA biosynthesis No

325-BISPHOSPHATE-NUCLEOTIDASE-

RXN Cyto

CoA metabolism Yes

PANTEPADENYLYLTRAN-RXN Cyto CoA biosynthesis No

AMP-DEPHOSPHORYLATION-

RXN Cyto

nucleotide metabolism No ATP

ADENOSINE-KINASE-RXN Cyto adenine and adenosine salvage II Yes

CARBAMATE-KINASE-RXN Plas ornithine-citrulline shuttle No ATP

6.3.4.16-RXN Plas Krebs ornithine cycle Yes

DUDPKIN-RXN Cyto nucleotide metabolism Yes ATP

RXN-14219 Cyto nucleotide metabolism No

DADPKIN-RXN Cyto purine deoxyribonucleosides salvage Yes ATP

RXN-14214 Cyto RXN-14195 No

DCDPKIN-RXN Cyto pyrimidine deoxyribonucleotide phos-

phorylation

Yes ATP

RXN-14216 Cyto RXN-14198 No

2.7.7.1-RXN Cyto None No ATP

NADPYROPHOSPHAT-RXN Cyto Preiss-Handler salvage pathway Yes

GLUCOKIN-RXN Cyto hexokinase Yes

THYMIDINE-TRIPHOSPHATASE-

RXN Cyto

thymine metabolism No ATP

DTDPKIN-RXN Cyto pyrimidine deoxyribonucleotide phos-

phorylation

Yes

RXN0-5462 Cyto nucleotide metabolism No

GDPKIN-RXN Cyto guanosine ribonucleotides biosynthesis Yes ATP

RXN-10770 Plas starch metabolism No

GLUC1PADENYLTRANS-RXN Plas starch biosynthesis Yes ATP

MYO-INOSITOL-1OR-4-

MONOPHOSPHATASE

myo-inositol biosynthesis Yes ATP

MYO-INOSITOL-1-KINASE-RXN Cyto lipid-independent phytic acid biosynthe-

sis

No

PHOSPHOENOLPYRUVATE-

PHOSPHATASE-RXN Cyto

pyruvate metabolism No ATP

PYRUVATEORTHOPHOSPHATE-

DIKINASE-RXN Cyto

glutamine biosynthesis Yes

190



Table B.2: A comprehensive list of all reactions involved in energy dissipating
modes identified from MILP method (see section 6.3.2), their function based
on BioCyc annotations and, where available, respective protein counts under
high and low light conditions. Md. Inv., No. of modes the reaction is involved
in; ProtLo, Protein counts under low light conditions; ProtHi, Protein counts
under high light conditions.

Reaction Md.

Inv.

Function ProtLo ProtHi

Plastid

LightCyc 168 Cyclic phosphorylation

ADENYL-KIN-RXN 166 PWY-7219 12 63.84

INORGPYROPHOSPHAT-RXN 158 28.8 50.16

PYRUVATEORTHOPHOSPHATE-

DIKINASE-RXN

141 glutamine biosynthesis 9.12 18.24

LightNonCyc 77 Non cyclic phosphorylation

1.2.1.13-RXN 60 Calvin cycle 319.2 453.72

PHOSGLYPHOS-RXN 54 glycolysis 242.4 403.56

GLUTATHIONE-REDUCT-NADPH-

RXN

25 GLUT-REDOX-PWY, PWY-4081 13.68 31.92

RXN-13185 25 Xanthophyll cycle 7.2 9.12

1.8.5.1-RXN 25 hydrogen peroxide detoxification 108 148.2

GLUC1PADENYLTRANS-RXN 23 PWY-622 28.8 191.52

CARBAMATE-KINASE-RXN 18 PWY-7060, CITRULLINE-DEG-

PWY

F16BDEPHOS-RXN 18 Calvin cycle 124.8 310.08

GLUTAMINESYN-RXN 17 glutamine - glutamate pathway 244.8 300.96

RXN-13193-(NADP) 17 4.56 4.56

6PFRUCTPHOS-RXN 16 glycolysis 6.84 6.84

RXN-10770 14

6.3.4.16-RXN 14 Krebs ornithine cycle 15.96 15.96

GLY3KIN-RXN 13 photorespiration

GLYCOGENSYN-RXN 9 PWY-622 6.27 25.08

GLUCOKIN-RXN 9 GLUCOSE1PMETAB-PWY, PWY-

7238, PWY0-1182

4.56 4.56

RXN-13193-(NAD) 8 4.56 4.56

GAPOXNPHOSPHN-RXN 6 glycolysis 319.2 590.52

PEPDEPHOS-RXN 5 glycolysis 16.72 91.2

RXN0-5184 5 38.76 93.48

CYSTATHIONINE-BETA-SYNTHASE-

RXN

4 transsulfuration pathway

PHOSPHOGLUCMUT-RXN 4 GLUCOSE1PMETAB-PWY, PWY-

3801, PWY-622, PWY-7238, PWY-

7343, PWYQT-4466

47.88 47.88

PHOSPHORIBULOKINASE-RXN 4 Calvin cycle 213.6 357.96

RXN0-5224 4 cyanate catabolism 698.4 1019.16

CYSTATHIONINE-BETA-LYASE-RXN 4 45.6 79.8

CARBPSYN-RXN 4 PWY-7060, PWY-5686, ARGSYN-

PWY, ARGSYNBSUB-PWY

15.96 15.96

RXN0-5114 3 SERSYN-PWY

PSERTRANSAM-RXN 3 SERSYN-PWY

GLUTAMATE-SYNTHASE-NADH-

RXN

3 glutamate biosynthesis from glu-

tamine

PGLYCDEHYDROG-RXN 3 SERSYN-PWY 21.6 114

RXN-2141 2

MALTODEXGLUCOSID-RXN 2

TYRAMINOTRANS-RXN 2

PGLUCISOM-RXN 2 glycolysis 3.42 6.84

RIBULOSE-BISPHOSPHATE-

CARBOXYLASE-RXN

2 Calvin cycle 2846.4 7462.44
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TRIOSEPISOMERIZATION-RXN 2 glycolysis 112.8 278.16

PREPHENATEDEHYDROG-RXN 2

RXN-961 2 photorespiration 2846.4 7462.44

GPH-RXN 2 photorespiration 4.8 9.12

PREPHENATE-TRANSAMINE-RXN 2 PWY-3461, PWY-3462

F16ALDOLASE-RXN 2 glycolysis 530.4 1035.12

6PGLUCONOLACT-RXN 2 OXIDATIVEPENT-PWY

GLU6PDEHYDROG-RXN 2 OXIDATIVEPENT-PWY 2.28 2.28

RXN-1827 2 9.12 27.36

RXN-5682 2 pretyrosine pathway

6PGLUCONDEHYDROG-RXN 2 OXIDATIVEPENT-PWY

3PGAREARR-RXN 1 glycolysis 16.8 95.76

2PGADEHYDRAT-RXN 1 glycolysis 45.6 189.24

Cyto

PEPDEPHOS-RXN 130 glycolysis 16.72 91.2

1.2.1.9-RXN 54 glycolysis 14.4 104.88

INORGPYROPHOSPHAT-RXN 53 28.8 50.16

ADENYL-KIN-RXN 44 PWY-7219 12 63.84

UMPKI-RXN 33

RXN-10745-(NADP) 31

RXN-7381 28

RXN-12199 28 pyrimidine biosynthesis

RXN-7401 28 UDP-L-arabinose biosynthesis 2.28

RXN-3522 26 hydrogen peroxide detoxification 21.6 184.68

GLUTATHIONE-REDUCT-NADPH-

RXN

17 GLUT-REDOX-PWY, PWY-4081 13.68 31.92

GLUTATHIONE-PEROXIDASE-RXN 15 DETOX1-PWY-1, PWY-4081 148.8 216.6

RXN-3521 15 hydrogen peroxide detoxification 134.4 371.64

3-PHOSPHOGLYCERATE-

PHOSPHATASE-RXN

13

ASPARAGHYD-RXN 12 asparagine degradation 1

PRPPSYN-RXN 11 5-phosphoribosyl 1-pyrophosphate

biosynthesis

ADENOSINE-KINASE-RXN 11 PWY-6619 33.6 75.24

RXN-8444 11 Preiss-Handler salvage pathway

F16BDEPHOS-RXN 11 Calvin cycle 124.8 310.08

NICOTINATEPRIBOSYLTRANS-RXN 11 Preiss-Handler salvage pathway

CATAL-RXN 11 removal of superoxide radicals 208.8 380.76

RXN-3541 11 2.4 2.4

ADENOSYLHOMOCYSTEINASE-

RXN

10 activated methyl cycle, SAM cycle 93.6 373.92

S-ADENMETSYN-RXN 10 S-adenosylmethionine biosynthesis 33.6 72.96

2.7.1.90-RXN 10 glycolysis 6.84

CDPKIN-RXN 8 pyrimidine biosynthesis 74.4 171

ATP-PYROPHOSPHATASE-RXN 8

ATPase 8

PANTEPADENYLYLTRAN-RXN 7 CoA biosynthesis

RXN-12200 7 pyrimidine biosynthesis

325-BISPHOSPHATE-

NUCLEOTIDASE-RXN

7 7.2 18.24

HOMOCYSTEINE-S-

METHYLTRANSFERASE-RXN

7 methionine biosynthesis from ho-

moserine II

ASNSYNB-RXN 7 ASPARAGINE-BIOSYNTHESIS 2.28 2.28

DEPHOSPHOCOAKIN-RXN 7 CoA biosynthesis

RXN-10811 7

GLUTAMIN-RXN 6 ornithine and citrulline biosynthesis 7.41 31.92

GMKALT-RXN 6 PWY-7224

UDPKIN-RXN 6 pyrimidine biosynthesis 74.4 171

GLUTAMINESYN-RXN 6 glutamine - glutamate pathway 244.8 300.96

RXN-11832 6 pyrimidine ribonu-

cleotide/ribonucleoside metabolism

RXN-11811 6

GLUCOSE-6-PHOSPHATASE-RXN 6

CMPKI-RXN 5

GUANYL-KIN-RXN 5 PWY-7221
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SULFATE-ADENYLYLTRANS-RXN 5 sulfation pathway 16.8 41.04

ADENYLYLSULFATASE-RXN 5 2.28

ASNSYNA-RXN 5 Asparagine synthetase (glutamine-

hydrolysing)

RXN-14026 4 pyrimidine nucleotides dephosphory-

lation

GDPKIN-RXN 4 PWY-7221 26.4 102.6

RXN-8092 4

RXN-9276-(NADP) 4

RXN0-3962 4

RXN-15514-(NADP) 4

DTDPKIN-RXN 4 PWY0-166, PWY-7187, PWY-6545,

PWY-7197, PWY-7184

74.4 171

DTMPKI-RXN 4 PWY0-166, PWY-7187, PWY-6545,

PWY-7197, PWY-7184

RXN-7913 4 PWY-7197

PHOSPHOENOLPYRUVATE-

PHOSPHATASE-RXN

4

DGDPKIN-RXN 4 PWY-7224, PWY-7226 74.4 171

RXN-9275 4 PWY-5287

DCDPKIN-RXN 4 PWY0-166, PWY-6545, PWY-7197,

PWY-7184

74.4 171

RXN0-383 4

DEOXYADENYLATE-KINASE-RXN 4 PWY-7224

DADPKIN-RXN 4 PWY-7227, PWY-7224 74.4 171

1.5.3.12-RXN 4 PWY-5287

CTPSYN-RXN 3 pyrimidine biosynthesis

RXN-2005 3 benzoic acid biosynthesis

RXN-9666 3

RXN-2945 3 IAA-amide conjugate biosynthesis

RXN-12753 3 PWY-6938

FAD-PYROPHOSPHATASE-RXN 3

RXN-2981 3 IAA biosynthesis from amide-

conjugates

2.28

FADSYN-RXN 3 vitamin B2 biosynthesis

RXN-2944 3 IAA-amide conjugate biosynthesis

2.7.7.1-RXN 3

RXN-9623 3

RXN-12198 3 pyrimidine biosynthesis

RXN-2982 3 IAA biosynthesis from amide-

conjugates

RXN-14218 3 RXN-14208

BENZOATE–COA-LIGASE-RXN 3 benzoate oxidation

RXN0-5462 3 RXN-14201 2.28

4.2.1.93-RXN 3 PWY-6938

RXN-9644 3 PWY-5995

NADPYROPHOSPHAT-RXN 3 Preiss-Handler salvage pathway 8.305714286 38.76

PALMITOYL-COA-HYDROLASE-

RXN

3

URIDINEKIN-RXN 3 PWY-7193

CYTIDEAM2-RXN 3 PWY-7193, PWY0-163, PWY-6556

MMUM-RXN 3 SMM cycle

METHIONINE-S-

METHYLTRANSFERASE-RXN

3 SMM cycle 4.56 9.12

RXN0-384 2

RXN-12304 2

RXN-14201 2

RXN0-1441 2 8.305714286 38.76

RXNQT-4150 2 PWYQT-4445

RXN-14140 2

L-ASCORBATE-PEROXIDASE-RXN 2 134.4 371.64

URKI-RXN 2 PWY0-163, PWYQT-4445

RXN-12196 2 pyrimidine biosynthesis

2PGADEHYDRAT-RXN 2 glycolysis 45.6 189.24

2.7.7.35-RXN 2 2.28

DCTP-PYROPHOSPHATASE-RXN 2 PWY-7206

RXN-11625 2 farnesylcysteine detoxification path-

way
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RXN0-5107 2

RXN0-385 2

RXN-12195 2 pyrimidine biosynthesis

1.8.5.1-RXN 2 hydrogen peroxide detoxification 108 148.2

RXN-14215 1 RXN-14195

RXN-14208 1

RXN-14195 1

ETHANOLAMINE-KINASE-RXN 1 PWY4FS-6, PWY-3385

RXN-14214 1 RXN-14195

CHOLINE-KINASE-RXN 1 CDP-choline pathway

GUANOSINEKIN-RXN 1 PWY-6618

RXN-14213 1 RXN-14200

PYRIDOXKIN-RXN 1 vitamin B6 salvage

OHMETPYRKIN-RXN 1 HMP salvage

PYRIMSYN3-RXN 1 HMP-PP biosynthesis

2.7.1.139-RXN 1 lipid-dependent phytic acid biosyn-

thesis

RXN-15513 1 glycolysis 16.8 95.76

DUDPKIN-RXN 1 PWY0-166 74.4 171

3.1.3.74-RXN 1 vitamin B6 salvage (plants)

MYO-INOSITOL-1-KINASE-RXN 1 lipid-independent phytic acid

biosynthesis

3PGAREARR-RXN 1 glycolysis 16.8 95.76

GALACTURONOKINASE-RXN 1 UDP-D-galacturonate biosynthesis

(salvage pathway)

GLUCOKIN-RXN 1 GLUCOSE1PMETAB-PWY, PWY-

7238, PWY0-1182

4.56 4.56

RXN-11150 1 vitamin c biosynthesis

RXNQT-4191 1 vitamin B1 biosynthesis IV

RXN-14181 1 vitamin B6 salvage (plants)

RXN-14046 1 vitamin B6 salvage (plants)

RXN-14219 1 RXN-14199

AMP-DEPHOSPHORYLATION-RXN 1

PYRAMKIN-RXN 1 vitamin B6 salvage

RXN-14217 1 RXN-14208

RXN-7609 1 PWY-6607, PWY-6606

GUANOSINE-DIPHOSPHATASE-RXN 1 RXN-14201

RXN-14200 1

RXN-14187 1 RXN-14198

4.1.1.32-RXN 1 PWY66-399

RXN-15581 1 D-serine hydro-lyase

3.1.3.62-RXN 1 PWY-6364

RXN-8899 1

RXN-12197 1 pyrimidine biosynthesis

THYMIDINE-TRIPHOSPHATASE-

RXN

1 RXN-14200

RXN-14216 1 RXN-14198

CYTIKIN-RXN 1 PWY-7193

PNKIN-RXN 1 vitamin B6 salvage

GLUCONOKIN-RXN 1 PWY-5530

2.7.1.127-RXN 1 PWY-6364

THIAZOLSYN3-RXN 1 PWY-7353,

RXN0-5186 1

RXN-7948 1

MYO-INOSITOL-1OR-4-

MONOPHOSPHATASE-RXN

1 PWY-2301 2.4 31.92

PEPCARBOXYKIN-RXN 1 GLUCONEO-PWY

THIAMINASE-RXN 1 PWY-7356

RXN-5647 1 PWY-3385

KETOHEXOKINASE-RXN 1

6PFRUCTPHOS-RXN 1 glycolysis 6.84 6.84

RXN-14139 1

RXN-8730 1 PWY-6364

THI-P-SYN-RXN 1 thiamine diphosphate biosynthesis

RXN0-5185 1

RXN-14198 1

PYRUVATEORTHOPHOSPHATE-

DIKINASE-RXN

1 glutamine biosynthesis 9.12 18.24
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5.1.1.18-RXN 1 D serine biosynthesis

Plas tx

Photon tx 231

PEP Pi tx 135

PYRUVATE tx 132

GAP 3PGA tx 54

O2 tx 54

Pi H+ tx 45

ATP tx 42

AMP tx 41

ADP tx 15

GLYCERATE tx 13

GLN GLT tx 12

NH3 tx 11

GAP Pi tx 8

G6P Pi tx 5

3PGA Pi tx 5

GLC tx 5

SER tx 1
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Appendix C

Model files and Python code

Contents of the attached CD.

Models

GSMs of Arabidopsis and Chlamydomonas in ScrumPy format.

Curation files

Corrected reactions, list of reactions and metabolites substituted and removed;

Corrections.spy, Substitutions.spy, Unwanted.py, respectively. Separate directories

for both models.

Knockout Investigation

KO Data.data, with data set of all knockout investigation results and KO Core.py,

python code used for analysis

Photon Absorbing Core models

Photon absorbing core models of Arabidopsis and Chlamydomonas

Energy Dissipation modes-analysis

Correlation Analysis, MILP - Python codes used for correlation coefficient and

MILP methods respectively.
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Biomass Data

Spreadsheet with experimentally generated biomass data for Chlamydomonas
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