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More on Vectors in  
 
Definition 1.1.3 If  is a vector in , we define the Euclidean 
norm (or Euclidean length) of  to be 
 

. 
 
 
 
Definition 1.1.4 If  and  are vectors in , we define 
the Euclidean inner product  to be 
 

. 
 
We refer to , endowed with this inner product, as Euclidean n-space. 
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Observation 1.1.5 For each  in , . 
 
 
Definition 1.1.6 If  and  are vectors in , define 
the cosine of the angle between  and  by 
 

. 

Two vectors  and  in  are orthogonal if and only if ; that is, if 
and only if the angle between them is . 
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Orthogonal Sets  
 
Definition 1.7.1 Let  be a set of non-zero vectors,  is an 
orthogonal set if each pair of vectors in  is orthogonal, and  is an 
orthonormal set if it is orthogonal and each vector is a unit vector. 
 
• Orthogonal:  if  

 

• Orthonormal:  
 
Example , where , , , is an 
orthogonal set of vectors in . 
 
Remark We can easily transform an orthogonal set of non-zero vectors into an 
orthonormal set as follows:  
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If the set  is orthogonal, then the set  

is orthonormal.  
 
This process of dividing each vector in an orthogonal set by its norm to produce 
an orthonormal set is called normalisation. 
 
Exercise Normalize the set  from the previous Example. 
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Gram-Schmidt Orthogonalization Process 
 
Suppose the set of vectors  is a basis, an orthogonal basis 

 can be obtained as follows: 
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Example Apply the Gram-Schmidt Orthogonalization Process to orthogonalize 
and then orthonormalize the set of vectors . 
 
Example Apply the Gram-Schmidt Orthogonalization Process to orthogonalize 
and then orthonormalize the set of vectors {(1,0, −1), (2, −1,0), (1,2,1)}. 
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Matrix multiplication    

If  is an  matrix and  is  matrix then the product  is the   
matrix.  

 

(67)89 = :8;<;9 + :8=<=9 + :8><>9 + ⋯:8@<@9 = A:8B<B9
@

BC;
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Example Consider the matrices 6 = D
3 0
−1 2
1 1

E, 7 = F4 −1
0 2 H, I = F1 4 2

3 1 5H. 

Compute 67, 6I, I6 and 7I. 
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Transpose of a matrix    

If   is an  matrix, then its transpose  is  an   matrix given by 
interchanging the rows and columns of . 

 

           

Example 7 Compute the transpose of the following matrices 

,     ,          and     . 
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Orthogonalization of vectors via Gaussian elimination 
 
If the set of vectors  are written as rows of a matrix 6, then 
applying Gaussian elimination to the augmented matrix (66K|6) will produce 
the orthogonalized vectors in place of 6.  
 
However, the matrix (66K|6) must be brought to row echelon form, using only 
the elementary row operations of adding a scalar multiple of one row to 
another or multiplying a row by a scalar. 
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Definition 4.2 The reaction correlation coefficient, , is the cosine of , 
the angle between rows  and  of the kernel matrix , i.e. 
 

. 
 

Observation 4.3  or . Thus, the minimal possible 

difference between reactions is  (reaction vectors are parallel) and 

maximum absolute value  (reaction vectors are orthogonal). 
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Example 4.4 Reactions 1 and 5 are members of the same subset. 
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 and   

(reaction vectors are parallel). 
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Drawback:  is, in most cases, not unique and depends upon both the 
algorithm used for its calculation and the initial row and column order of .  
 
The angles between the row vectors of any  for a given  are unique, 
provided  is orthogonal, that is , in which case  represents an 
orthonormal basis of the null-space of . 
 
 
Theorem 4.5. Let  and  be orthogonal matrices with equal dimensions, 
then 
 

 
 
for any rows  and .* 
                                                             
* M. G. Poolman, C. Sebu, M. K. Pidcock and D. A. Fell, Modular decomposition of metabolic systems via null 
space analysis, Journal of Theoretical Biology 249(4): 691-705, (2007).  
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Observation 4.6  is Pearson’s correlation coefficient between the fluxes 
carried by reactions  and  for all possible steady states of the system.* 
 

For a pair of reactions,  and , with corresponding rows in ,  and  :   
 

. 

 
:  and   are parallel, and thus carry steady-state flux in a fixed 

ratio. Hence, the reactions are members of the same subset. 
 

:  and  are orthogonal ⟹ reactions  and  are in 
stoichiometrically disconnected subsystems (no correlation between fluxes). 
                                                             
* M. G. Poolman, C. Sebu, M. K. Pidcock and D. A. Fell, Modular decomposition of metabolic systems via null 
space analysis, Journal of Theoretical Biology 249(4): 691-705, (2007).  
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Remark  is an orthonormal 

basis for  .The following kernel matrix is orthogonal 
 

 and . 
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Significance of the reaction correlation coefficient   
 
Spans the continuum of possible correlations between any pair of reaction 
fluxes, from being completely dependent to completely independent.  
 
Can be regarded as a quantitative generalisation of the qualitative concept of 
the reaction subset. 
 
 
 
 
 
 
 
 
 
 
 

!
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LPEMs 
 
LPEMs** is a novel algorithm which uses Linear Programming (LP) to 
decompose a flux vector, #, into a linear combination of EMs, without requiring 
the calculation of the entire set of EMs of the network. 
 
EMs consist of the smallest non-decomposable pathways within a metabolic 
system, that can combine to form every possible steady-state flux. 
 
Decomposing flux measurements obtained from experiments or simulations 
into such a set of constituents allows for their interpretation as a weighted sum 
of pathways (each with associated external input and output), thus revealing 
how potential routes within the network can contribute to the observed overall 
system behaviour, as well as providing the means to assign relative flux values 
to EMs. 
                                                             
** Y. Said, D. Singh, C. Sebu and M. Poolman, A Novel Algorithm to Calculate Elementary Modes: Analysis of 
Campylobacter jejuni Metabolism, Biosystems 234, (2023). https://doi.org/10.1016/j.biosystems.2023.105047. 
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Most of methods previously developed rely on having calculated a complete 
set of EMs a priori, which is not computationally practical for large metabolic 
models.  
 
 
The Algorithm 
 

Let # ∈ ℝP be the flux vector to be decomposed into EMs (Q is the number of 
reactions).  
 

Output is a matrix, ,, whose column vectors, R8, consist of EMs, such that: 
 

# = ∑ R8T
8C; , 

 
where U is the number of EMs.  
 
EMs are not normalised in this instance, i.e. the magnitude of each R8 reflects 
the contribution of that EM to #. 
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Prior to starting the decomposition, # is ensured to be at steady-state. If not, # 
is approximated to the closest vector that satisfies V# = W, and the excess is 
saved as an error vector. 
 
Then, the algorithm proceeds to iteratively obtain EMs, whilst simultaneously 
eliminating components of the flux vector (starting from the smallest first).  
 
At each iteration, the following LP problem is used to obtain a solution,	#′ , that 
has specific properties that depend on #: 

ℱ(#, V) = argmin	A|a8b|
@

8C;
	 

 

subject	to	 k
V#b = W,

almnb = almn,
|a8b| ≤ |a8|, sign(a8b) = sign(a8), for	all	r ∈ {1, 2, … Q}.
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Once an LP solution is found, the Rank Test is applied to determine whether 
#b is an EM (Step 4 in Algorithm 1). 
 
If the solution is not an EM, it is decomposed into constituent EMs by creating 
a submatrix matrix of V that contains only the reactions present within #b and 
enumerating its EMs. A set of fluxes are assigned to the EMs by solving  
 

,u = #′, 
 

where u is a vector of flux weightings assigned to each EM1. 
 
The one or more obtained EMs are saved, and the loop restarts using the 
modified flux vector #: 
 

# − #′ → #. 
 

                                                             
1 M. G. Poolman, K. V. Venkatesh, M. K. Pidcock, and D. A. Fell. A method for the determination of flux in 
elementary modes, and its application to Lactobacillus rhamnosus. Biotechnology and Bioengineering, 
88(5):601–612, 2004. 
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The loop continues to iteratively append EMs to , whilst simultaneously 
eliminating components of the flux vector #, until # = W.  
 
The elimination of components starting by the smallest first is based on the 
assumption that the smallest component is the most likely to contribute to the 
least amount of EMs. 
 
The algorithm is implemented in Python and is publicly accessible as part of 
release 3 of ScrumPy3. 
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Chapter 3: Decomposing Flux Vectors into Elementary Modes

Algorithm 1 Decomposing v into a set of EMs, E
1: while |v| > 0 do
2: vmin = minimum value in v
3: vÕ = F(v, N) given by Equation (3.2)
4: if vÕ is not an EM then
5: decompose vÕ into a set of EMs
6: append these EMs to E
7: else
8: append vÕ to E
9: end if

10: v ≠ vÕ
æ v

11: end while.

solution, vÕ, that has specific properties that depend on v:

F(v, N) = argmin qr
i=1 |vÕ

i|

subject to

Y
______]

______[

NvÕ = 0 ,

vÕ
min = vmin ,

|vÕ
i| Æ |vi|, sign(vÕ

i) = sign(vi), for all i œ {1, 2, . . . , r} .

(3.2)

The LP is constrained such that the reaction with the smallest non-zero flux value in

v, vmin, has the same flux as in v within the solution (i.e. vmin = vÕ
min). In addition,

the value of every other reaction in the solution, vÕ
i, is constrained to not exceed the flux

values found within v, and the LP objective is to minimise the total flux in the solution.

Once an LP solution is obtained, the Rank Test (Section 3.3) is applied to determine

whether vÕ is an EM (Step 4 in Algorithm 1).

If the solution is not an EM, it is decomposed into constituent EMs by creating a sub-

matrix of N that contains only the reactions present within vÕ and enumerating its EMs.

Once the EMs of this sub-system are obtained, a conventional algorithm (described by

Poolman et al. [2004b]) assigns a set of fluxes to the EMs by obtaining the pseudo-inverse

of the EM matrix, E (EMs as columns reactions as rows), such that Ew = vÕ where w is

a vector of flux weightings assigned to each EM.

The one or more obtained EMs are saved, and the loop restarts using the modified flux

48
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Mathematical considerations 
 

Let x(#) denote the set of indices of the non-zero elements of #, i.e. 
 

x(#) = {r ∈ ℕ|	1 ≤ r ≤ Q	and	a8 ≠ 0}. 
 

and V| denote a sub-matrix of V that contains only the reactions in x(#). 
 

• The Rank Test (Step 4 in Algorithm 1): The vector, #, is an EM if V| has a 
nullspace of dimension one, i.e. dim}Ker(V|)� = 1 2. 

 

• Decomposing Ä into EMs (Step 5 in Algorithm 1): The EMs of the sub-model 
generated by V| is a subset of the EMs of the original model. There exists a 
minimal decomposition of # into at most dim}Ker(V|)� EMs. 

 

• Step 10 in Algorithm 1: If  #  and #′ are two steady-state flux vectors, then 
# − #′ is a steady-state flux vector of the system. 

                                                             
2 J. Gagneur and S. Klamt. Computation of elementary modes: A unifying framework and the new binary 
approach. BMC Bioinformatics, 5:1–21, 2004.  
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Rank of a matrix and dimension theorem 

Definition The rank of a matrix , written , is equal to the number of 
nonzero rows (i.e. rows with nonzero pivot entries) in a row-echelon form of . 

 

Theorem If 6 is an Å × É matrix, then 

rank(Ö) + dim}Ker(Ö)� = É. 

 

 

 

 

 

A ( )rank A
A
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Example 
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 is a basis for Ker .  
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Elementary modes 
 
1.                                                        2.  

 
 
 
 
 
 
 
 

( )1,1,0,0,1 ( )0,1,1,0,0
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Non Elementary Modes 
 

 


