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Recap - Structural Modelling

Null space: Encapsulates all possible steady-state solutions.
Enzyme subsets: Sets of reactions carrying flux in fixed ratio.

Elementary modes: Minimal, independent pathways in a
system
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Technical challenges with large models

Null space: Readily calculated, but can’t analyse by
inspection.
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Technical challenges with large models

Null space: Readily calculated, but can’t analyse by
inspection.

Enzyme subsets: Not as generally useful compared to small
models. (Possible scope for future work?)

Elementary modes: Impractical. (But still a useful concept)
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Other disadvantages of null-space analysis

@ Provides a rather ‘unfocussed’ view of the system.
@ Does not (implicitly) take into account thermodynamics.
@ Hard to integrate experimental flux observations.

@ (Still very useful for validation).
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Application of LP to metabolic networks - FBA

Linear programming calculates a specific solution to the
equation:

Nv =0

Subject to some additional information supplied by the user - an
Objective Function and at least one flux value specified.
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Application of LP to metabolic networks - FBA

Linear programming calculates a specific solution to the
equation:

Nv =0

Subject to some additional information supplied by the user - an
Objective Function and at least one flux value specified.

If Null-space analysis can be thought of as a flood light, LP can
be thought of as a laser beam.
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Application of LP to metabolic networks - FBA

min/max  : Vg

subject to .
) { max; > V; > min;
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Application of LP to metabolic networks - FBA

min/max  : Vg <+— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <+— flux constraints

Typical Objectives:
@ Maximise output(s) (need to fix input(s))
@ FBA maximise growth rate for fixed input.
@ Minimise input(s) (need to fix output(s))

@ Minimise all reactions (need to fix input(s) and/or output(s))
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Application of LP to metabolic networks - FBA

min/max Vg +— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints

Typical flux constraints:
@ min; = max; # 0 : flux is fixed
@ min; = max; = 0 : reaction is knocked out.
@ min; = 0, max; # 0 : force irreversible L->R

@ min; # 0, max; = 0 : force irreversible R->L
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Advantages of FBA

@ Very fast.
@ Integrates flux data.
@ Easy to reformulate the problem and solve again.

@ The reactions in a solution can be extracted from the main
model for more detailed analysis.
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Disadvantages of FBA

@ Only provides a single solution.
@ Potential for numerical instability (esp. if maximising).
@ Potential for multiple optima.

@ Choice of the objective is subjective (!)
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Exploring the optimal space - constraint scanning

minimise  :  Viargs <— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints

Find a solution.

Increment one (or more) of the constraints v;

Solve again.

Repeat to build up a set of solutions.

Identify correlated responses in the solution set.
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Example - identifying a catabolic core

A study of Salmonella spp.
@ Antibiotic challenges generate a stress response.
@ This increases the demand for ATP.

@ How to identify which reactions will respond to this
demand?
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Example - identifying a catabolic core

Scan over a range of ATP demand fluxes (while synthesising
biomass) and identify responding reactions.
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Example - identifying a catabolic core

Scan over a range of ATP demand fluxes (while synthesising
biomass) and identify responding reactions.

minimise  : |V +— objective — min. sum of fluxes
Nv=0 +— steady state constraint
subject to Vi=1 <— output transporters, constant

VaTPase = JaTpase <— ATP hydrolysis, varied
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Results - flux response
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Results - flux correlatio
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@ 33 reactions correlated with imposed ATPase.




Results - catabolic core
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Results - condensed network

ESS_1

NADPH NADP
ESS_3

ADP NADP  OAA Fum NADPH ATP PEP

ESS_2

<z
CO0 00N

X0, PEP  Pyr NADH

x_CO,

D G6P
NADH THX NAD

NADH
ATP NADPH
ESS_5
NADP NADPH
ADP
P
-—
NAD GAP Ess.6

Null space and Linear Programm




Conclusion

By combining multiple techniques, we can learn more about the
system properties than would be possible by using such
techniques in isolation.
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