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onhyd roxytyrate

. Cosmetics Packaging
— 100% Bioplastic

Historical Bioplastics 2
“Galaith” for Jewels

(PHA) or polyhydroxyalkanoates PHB

PHB is produced naturally as a storage compound by some bacteria,
and notably by the Ho—utilising, COo—fixing Cupriavidus necator

(aka Ralstonia eutropha).
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Polyhydroxybutyrate Synthesis in Yeast
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Based on highest—yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH — PHB + 2 CO» 0.67
2. 65Ac. +31 EtOH — 30PHB + 72 CO, 0.63

(Number following each mode is the fractional carbon conversion.)

Carlson et al, Biotechnol. Bioeng. 79, 121-134, 2002.
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Based on highest—yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH — PHB + 2 CO» 0.67
2. 65Ac. +31 EtOH — 30PHB + 72 CO, 0.63

Wild-type yeast + ATP—citrate lyase + PHB pathway

3. 12EtOH —-5PHB +4 CO, 0.83
4. 77 EtOH + 31 Glycerol —
48 PHB + 4 Ac. + 47 CO» 0.78

(Number following each mode is the fractional carbon conversion.)

Carlson et al, Biotechnol. Bioeng. 79, 121-134, 2002.
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1um

Isolated from high salinity lake ~
32ppt

Non-pathogenic, highly motile,
non spore forming and gram
postive.

Within group of acetogens - 22 genera in soils, sediments, intestinal tracts.

Acetogens use the acetyl-CoA or Wood-Ljungdahl Pathway to grow
autotrophically on inorganic substrates (H2-CO2, CO) but also metabolise
organic substrates — hexoses, pentoses, alcohols, methyl groups.

Model acetogens — Moorella thermoacetica, Acetobacterium Woodii and
Clostridum Ljungdabhlii

Currently categorised as a RNF Na-dependant acetogen
Genome - 4,044,777 bp, 3,473 proteins
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Industrial Application
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Catabolism Overview
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Metabolites with blue backgrounds have exchange transporters and
those with red backgrounds have export transporters.

Dashed lines represent the cell membrane and so metabolites inside
these are internal metabolites. The colour of non-black arrows
represents membership to one of the four reaction subsets.
Numbers under reaction labels indicate the number of elementary

modes that reaction is involved in.

R1:Rnf complex, R2:ATP synthase, R3:carbon monoxide
dehydrogenase (CODH), R4:bifurcating hydrogenase (EBHyd),
R5:hydrogen-dependent formate dehydrogenase (HDFD), R6:ATP
hydrolase, R7:formate-THF ligase, R8:acetyl-CoA synthase,
R9:methenyl-THF cyclohydrolase, R10:phosphate acetyltransferase,
R11:acetaldehyde dehydrogenase, R12:methylene-THF
dehydrogenase, R13:methyl-THF reductase,
R14:methyl-THF:corrinoid/iron-sulfur methyltransferase, R15:alcohol
dehydrogenase, R16:acetate kinase, Ac_tx:acetate transporter,

Etoh_tx:ethanol transporter.
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Elementary modes of the WLP

Mode | Stoichiometry Reactions YXTP
1 2 CO9, 4 Hy — Ac, 2 HyO, HT 19 0.15
2 26 CO9,72 Hy — 3 Ac, 10 EtOH, 36 H,O, 3H™ 19 0.00
3 3 CO9, 5 Hy — Ac, CO, 3Hs0, H™ 15 0.00
4 4 CO, 2 HoO — Ac, 2 CO9, HT 18 0.38
5 CO, HyO — Hy, CO5 9 0.30
6 6 CO, 3 H,O — EtOH, 4 CO> 18 0.29
7 CO,, CO, 3Hy — Ac, HoO, HT 19 0.30
8 CO9y, CO, 5 Hy — EtOH, 2 H7O 18 0.11
9 17 CO9, 3 CO, 57 Hy — 10 EtOH, 27 H50 18 0.00
10 | 2C0O,2Hy — Ac, H™ 18 0.45
11 | 3CO, Hy, HyO — Ac, CO9, HT 19 0.40
12 | 5CO, Hs, 2 H,O — EtOH, 3 CO5 18 0.29
13 | 3CO, 3 Hy — EtOH, CO» 18 0.27
14 | 2CO, 4 Hy — EtOH, H20 18 0.26
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Clostridium ethanogenum uses the WL pathway to capture CO-
and CO to make ethanol as well as acetic acid.

A New Zealand start-up company LanzaTech developed a
process with a strain that makes mainly ethanol using the

off-gases from steel mills.

It uses a specially designed fermentation vessel and several
working—scale versions have been installed in steel mills and the

like.

The ethanol can be converted to various chemical precursors,
and there is also a chemical process to convert it to ‘sustainable’

aviation fuel.
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|
L T h ABOUT TECHNOLOGY ~ INVESTOR RELATIONS
anzalec NEWS ~ RE:CARBON BLOG CAREERS CONTACT
Carbon Recycling
Technology for Today
and the Future
LanzaTech’s carbon recycling technology is like retrofitting a
brewery onto an emission source like a steel mill or a landfill site,
but instead of using sugars and yeast to make beer, pollution is
converted by bacteria to fuels and chemicals! Imagine a day when
your plane is powered by recycled GHG emissions, when your
shampoo bottle started life as emissions from a steel mill. This
future is possible today using LanzaTech technology.
Startup Year Z 2 Z
Gt 60,000 Metric
Ethanol
Production Tons
Volume
Annual CO; "120,000 Metric
Abatement
Tons
Volume
Catban Ferroalloy Mill
Sl Emissions
]
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Some of the issues:

e Plant wastes (e.g. straw) contain cellulose and hemicellulose
which can be hydrolysed to glucose and pentose sugars.

e Yeasts convert glucose to ethanol, but don’t readily use the

pentoses.

e [Escherischia coli can use pentoses as well as glucose, but

ethanol is not its preferred product.

e FE. coliis easy to engineer, but can it be modified to make ethanol
from pentoses in such a way that it cannot mutate back to its

original state?
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Friedrich Srienc’s group (Trinh et al, Appl. Env. Microbiol, 74,
3634-3643, 2008) built a medium-sized structural model of E coli

central carbon metabolism.
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Conclusion

e Friedrich Srienc’s group (Trinh et al, Appl. Env. Microbiol, 74,
3634-3643, 2008) built a medium-sized structural model of E coli
central carbon metabolism.

e They computed the elementary modes leading from glucose and
pentoses to products including ethanol and biomass.

e They searched for reactions that were needed for the most
number of modes leading to other products but which still kept
some of the routes to biomass and ethanol.

e They found a set of seven reactions (eight genes) that between
them disabled all the modes except those leading to either
ethanol alone or biomass and ethanol.

e They successively made the set of deletions where growth can
only occur with ethanol production and obtained close to the
theoretically-predicted yields of ethanol on glucose and xylose.
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e Elementary modes analysis can assist biotechnology projects to
design metabolic network modifications for new products or to

obtain improved yields.

e Strategies can include both addition of heterologous enzymes to
provide new routes, or deletion of native enzymes to block

unproductive routes.
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