
A Gentle Introduction to Metabolic Modelling
with Python

Mark Poolman

Oxford Brookes University

December 9, 2024

Mark Poolman Metabolic Modelling With Python

The Problem

Mark Poolman Metabolic Modelling With Python

The Problem

Mark Poolman Metabolic Modelling With Python

Amino acids

DNA

RNA

Lipids

Carbohydrates

The Problem

Mark Poolman Metabolic Modelling With Python

Amino acids

DNA

RNA

Lipids

Carbohydrates

Phosphate

Glucose

Oxygen

Sulphate

Nitrogen

The Problem

How to connect input(s) to output(s) ??

Mark Poolman Metabolic Modelling With Python

Amino acids

DNA

RNA

Lipids

Carbohydrates

Phosphate

Glucose

Oxygen

Sulphate

Nitrogen

The Problem

How to connect input(s) to output(s) ??

Mark Poolman Metabolic Modelling With Python

Amino acids

DNA

RNA

Lipids

Carbohydrates

Phosphate

Glucose

Oxygen

Sulphate

Nitrogen

Motivation

What do we want to know - can we:

Define network behaviour (assign fluxes to reactions)?

Determine the effect of network modification?

Identify the modification needed to achieve a specific
effect?

Mark Poolman Metabolic Modelling With Python

Challenges with large networks

They are large (!)

Can we extract simple subsystems from very large reaction
networks ?

How do the ‘standard’ biochemical pathways function in
very large networks ?

How will this help our practical understanding of
biochemical networks ?

Mark Poolman Metabolic Modelling With Python

This is not a programming course.

No assumption of previous programming experience.

Basic usage of a language as a tool - no technical details.

Fundamental mathematical concepts as relevant to network
analysis.

Mark Poolman Metabolic Modelling With Python

This is not a programming course.

No assumption of previous programming experience.

Basic usage of a language as a tool - no technical details.

Fundamental mathematical concepts as relevant to network
analysis.

Mark Poolman Metabolic Modelling With Python

Why use a language for modelling ?

Flexibility - define what you want to do.

Repeatability - apply the actions same actions to many
models.

Reliability - errors are less likely to go unnoticed, code can
be analysed.

Abstract concepts or large data-sets can’t always be
visualised.

Mark Poolman Metabolic Modelling With Python

Why Python ?

Easy to learn.

Forgiving.

Flexible.

Interactive.

High level - lets you concentrate on the problem, not the
computer.

Wide range of existing software and libraries.

Free (As in Beer and Freedom).

Mark Poolman Metabolic Modelling With Python

What’s in a program?

A collection of data representing some real-world entity.

A set of actions that can be performed on that data.

Some means by which the user can specify which actions
to perform.

In Python (and other languages) the data and actions are both
defined by Objects

(aka types).

Mark Poolman Metabolic Modelling With Python

Objects and types

An object is a computational representation of something that
exists in the real world.

The type (or class) of an object is defined by its properties.

Cats:
Fur colour,
Length of whiskers.

Proteins:
AA sequence,
Iso-electric point.

Mark Poolman Metabolic Modelling With Python

Objects and types

The type of an object defines what it can do, e.g.

Cats can:
Sleep
Go miaow

Proteins can:
Precipitate
Catalyse a reaction

Mark Poolman Metabolic Modelling With Python

Objects and types

The type of an object defines what can be done to it, e.g.

Cats can be:
Stroked
Chased

Proteins can be:
Crystallised
Digested

Mark Poolman Metabolic Modelling With Python

Objects and types

The type of an object defines how it can interact with other
objects, e.g.

Cats can:
Reproduce with other cats
Digest a protein

Proteins can:
Bind to other proteins
Poison a cat

Mark Poolman Metabolic Modelling With Python

Types and Classes - Summary

The concept of objects that have known properties, can be
acted upon and can interact with other objects is central.

Objects are abstract representations of their real-world
equivalents (including proteins and cats).

(and, of course, metabolic networks)

Mark Poolman Metabolic Modelling With Python

Types and Classes in Python - Syntax

Attributes define the properties of an object and can either be:

Data attributes MyCat.NumberOfWhiskers

OR
Method attributes Indicated by parentheses ()

MyCat.PlayWithString()

Method attributes can be passed additional information:

MyCat.GotoSleep(3600)

Method attributes can return information:

FeedNow = MyCat.IsHungry()

Mark Poolman Metabolic Modelling With Python

Types and Classes in Python

Python defines a number of built-in fundamental classes, which
can be used to create more complex representations of
real-world entities.

The distinction between types and classes in Python is
historical, in modern python they are the same thing.

Builtin types are subdivided into:

Primitive: Represents exactly one value.

Compound: Can represent multiple values.

Note: Variable types are not declared in advance - type is
determined by assignment.

Mark Poolman Metabolic Modelling With Python

Primitive types: Boolean

The simplest of all classes and can take the value of True or
False.

e.g. FeedNow = MyCat.IsHungry()

FeedNow is logically a Boolean value: MyCat is either hungry
or it is not.

Used (mainly) for various decision making.

Mark Poolman Metabolic Modelling With Python

Primitive types: Integer

Whole numbers (negative and positive)

Range is only limited by the capacity of the computer:

e.g.
Calculate 10106

Massive = 10**10**6

The usual mathematical operators +, −, *, / work mainly as
expected, but see later.

Mark Poolman Metabolic Modelling With Python

Primitive types: Floats

Real numbers with possible with a fractional part. Defined
either by a decimal and/or ‘e’ notation

e.g.:
NearPi = 3.12
Planck = 6.62607015e−34

Range is double precision:
10x : −308 ≤ x ≤ 308
(But only 16 SF)

Standard operators act as before

Mark Poolman Metabolic Modelling With Python

Python String Class
Strings are sequences of characters, often used for names and
simple descriptions, but could also represent an entire
document.

Create an object called text of type string:

>>> t e x t = "My cat p lays wi th s t r i n g "

It has properties, e.g. length:

>>> len (t e x t)
24

It can be acted upon, e.g. printed:

>>> p r i n t (t e x t)
My cat p lays wi th s t r i n g

It can interact with other objects:

p r i n t (t e x t + " and mice ")
My cat p lays wi th s t r i n g and mice

Mark Poolman Metabolic Modelling With Python

Compound types

Compound types allow arbitrary collections of objects to be
held together. The two major compound types are:

Lists: Items are stored in order and are referenced
(indexed) by an integer.

Dictionaries: Items have no implicit order and can be
indexed by a variety of types (commonly strings)

Mark Poolman Metabolic Modelling With Python

Compound types - Lists

Lists hold collections of items in order:

Mark Poolman Metabolic Modelling With Python

Compound types - lists

Lists hold collections of items in order: {
List

Mark Poolman Metabolic Modelling With Python

Compound types - lists

Lists hold collections of items in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

Mark Poolman Metabolic Modelling With Python

Compound types - lists

Lists hold collections of items in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

0 1 2 3 4
Index

Mark Poolman Metabolic Modelling With Python

Compound types - lists

Lists hold collections of items in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

-5 -4 -3 -2 -1Index

Mark Poolman Metabolic Modelling With Python

Compound types - lists

Example:

>>> ExampleList = [" A" , "B" , "C" , "D" , "E "]
>>> ExampleList [0]
’A ’
>>> ExampleList [1]
’B ’
>>> ExampleList [4]
’E ’
>>> ExampleList [−1]
’E ’
>>> ExampleList [−5]
’A ’

Mark Poolman Metabolic Modelling With Python

Compound types - dictionaries

Similar in concept to lists, but items held as key/value pairs, are
not ordered, and key types are not restricted to integer.{"Org" "Temp" "Viable" "Day" "Media"

"Ecoli" 97.20 False 10 "Simple"

{

{
keys

values

dictionary

Mark Poolman Metabolic Modelling With Python

Compound types - dictionaries

Creating a dictionary:

>>> ExampleDict = { " Org " : " Eco l i " ,
"Temp" : 9 7 . 2 ,
" V iab le " : False ,
"Day " : 1 0 ,
" Media " : " Simple "

}

Mark Poolman Metabolic Modelling With Python

Compound types - dictionaries

Changing existing values in a dictionary:

>>> ExampleDict [" Media "] = " Complex "
>>> ExampleDict [" Temp "] = 30
>>> ExampleDict [" V iab le "] = True
>>> p r i n t (ExampleDict)
{ ’ Media ’ : ’ Complex ’ ,

’ Org ’ : ’ Eco l i ’ ,
’ V iable ’ : True ,
’Temp ’ : 30 ,
’Day ’ : 10
}

Mark Poolman Metabolic Modelling With Python

Compound types - dictionaries

Adding new key/value pairs to a dictionary:

>>> ExampleDict [" Recorded by "] = " Mark "
>>> p r i n t ExampleDict
{ ’ Media ’ : ’ Complex ’ ,

’ Org ’ : ’ Eco l i ’ ,
’ V iable ’ : True ,
’Temp ’ : 30 ,
’ Recorded by ’ : ’ Mark ’ ,
’Day ’ : 10
}

Mark Poolman Metabolic Modelling With Python

Functions in Python

Functions behave in the same way as class methods, although
they are not an attribute of any particular class.

dir() list the attributes of an object.

type() returns the class of an object.

len() returns the length of an object (if that is
meaningful)

Mark Poolman Metabolic Modelling With Python

Functions in Python - Examples

>>> L = [1 ,2 ,3 ,4]

>>> d i r (L)
[’ __add__ ’ , ’ __class__ ’ , ’ __contains__ ’ , ’ __de la t t r__ ’ , ’ __deli tem__ ’ ,
.
.
’ append ’ , ’ count ’ , ’ extend ’ , ’ index ’ , ’ i n s e r t ’ , ’ pop ’ ,
’ remove ’ , ’ reverse ’ , ’ so r t ’]

>>> type (L)
<type ’ l i s t ’ >

>>> len (L)
4
>>>

Mark Poolman Metabolic Modelling With Python

Here’s one I made earlier - Modules

Modules are used to store pre-written python code for later
re-use. They must be imported in order to be used:

>>> impor t math
>>> d i r (math)
[. . . ,
’ p i ’ , . . .
’ sq r t ’ . . .]

Modules can then be accessed with dot notation:

>>> p r i n t (math . p i)
3.14159265359
>>> p r i n t (math . s q r t (2))
1.41421356237

Mark Poolman Metabolic Modelling With Python

Here’s one I made earlier - Modules

Alternatively selection of items can be imported instead:

>>> from math impor t p i , s i n
>>> p r i n t (s in (p i / 4))
0.707106781187

Mark Poolman Metabolic Modelling With Python

For loops (other loops are available)

We frequently wish to act upon each item in a list in turn. The
for loop provides a convenient way of doing this.

In general:

f o r Item i n MyList :
do something

Example:

>>> f o r l e t t e r i n ExampleList :
p r i n t l e t t e r

C
B
A
E
D

Mark Poolman Metabolic Modelling With Python

For loops (other loops are available)

For loops provide a convenient way of scanning across a range
of numbers, using, for example the built in range function:

>>> f o r x i n range (1 0) :
p r i n t (x , x * *2 , x * * 3)

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

Mark Poolman Metabolic Modelling With Python

