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Recap - Structural Modelling

Null space: Encapsulates all possible steady-state solutions.
Enzyme subsets: Sets of reactions carrying flux in fixed ratio.

Elementary modes: Minimal, independent pathways in a
system

Conserved cycles: Sets of metabolites whose total
concentration is fixed.

Mark Poolman Null space and Linear Programming



Technical challenges with large models

Null space:
Enzyme subsets:

Elementary modes:

Conserved cycles:
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Other disadvantages of null-space analysis

Provides a rather ‘unfocussed’ view of the system.

Does not (implicitly) take into account thermodynamics.

Hard to integrate experimental flux observations.

Less interpretable for large (genome-scale) models.

(Still very useful for validation).
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Application of LP to metabolic networks - FBA

Linear programming calculates a specific solution to the
equation:

Nv=0

Subject to some additional information supplied by the user - at
least one flux value specified.
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Application of LP to metabolic networks - FBA

min/max  : Vg

subject to Nv =0
) max; > V; > min;
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Application of LP to metabolic networks - FBA

min/max  : Vg +— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <+— flux constraints

Typical Objectives:
@ Maximise output(s) (need to fix input(s))
@ FBA maximise growth rate for fixed input.
@ Minimise input(s) (need to fix output(s))

@ Minimise all reactions (need to fix input(s) and/or output(s))
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Application of LP to metabolic networks - FBA

min/max Vg +— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints

Typical flux constraints:
@ min; = max; # 0 : flux is fixed
@ min; = max; = 0 : reaction is knocked out.
@ min; = 0, max; # 0 : force irreversible L->R

@ min; # 0, max; = 0 : force irreversible R->L
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Advantages of FBA

@ Very fast.
@ Integrates flux data.
@ Easy to reformulate the problem and solve again.

@ The reactions in a solution can be extracted from the main
model for more detailed analysis.
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Disadvantages of FBA

@ Only provides a single solution.
@ Potential for numerical instability (esp. if maximising).
@ Potential for multiple optima.

@ Choice of the objective is subjective (!)
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Exploring the optimal space - constraint scanning

minimise  :  Viargs <— objective
. Nv=0 +— steady state
subject to . .
max; > V; > min; <— flux constraints

Find a solution.

Increment one (or more) of the constraints v;

Solve again.

Repeat to build up a set of solutions.

Identify correlated responses in the solution set.
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Example - identifying a catabolic core

A study of Salmonella spp.
@ Antibiotic challenges generate a stress response.
@ This increases the demand for ATP.

@ How to identify which reactions will respond to this
demand?
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Example - identifying a catabolic core

Scan over a range of ATP demand fluxes (while synthesising
biomass) and identify responding reactions.
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Example - identifying a catabolic core

Scan over a range of ATP demand fluxes (while synthesising
biomass) and identify responding reactions.

minimise  : |V +— objective — min. sum of fluxes
Nv=0 +— steady state constraint
subject to Vi=1 <— output transporters, constant

VaTPase = JaTpase <— ATP hydrolysis, varied
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Results - flux response
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Results - catabolic core
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Results - condensed network
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