Null Space, Subsets, Elementary Modes and Conserved Cycles Nottingham 2022

Mark Poolman

May 4, 2022

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

< 同 > < 三 >

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

・ロト ・聞ト ・ヨト ・ヨト

■ のへで

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

The Problem

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

The Problem

How to connect input(s) to output(s) ??

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

프 🖌 🛪 프 🕨

э

The Problem

How to connect input(s) to output(s) ??

э

What do we want to know - can we:

• Determine network behaviour (assign fluxes to reactions)?

• Predict the effect of network modification?

Identify the modification needed to achieve a specific effect?

・ 同 ト ・ ヨ ト ・ ヨ ト

Example - The Woods-Ljungdahl Pathway

Questions:

- Which reactions are essential?
- What combinations of inputs can be used to generate ATP?
- What does knowledge of one metabolite concentration tell us about the concentration of another?

Example - The Woods-Ljungdahl Pathway

Questions:

- Which reactions are essential?
- What combinations of inputs can be used to generate ATP?
- What does knowledge of one metabolite concentration tell us about the concentration of another?

Definition of a metabolic model

- A set of *External* metabolites inputs and outputs.
- A set of Internal metabolites no net production or consumption.
- A set of reactions that inter-convert them defined by:
 - Stoichiometry.
 - Directionality.
 - Reversibility.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Reactions interconvert substrates and products whilst conserving mass.
- Transporters are a special case of reaction (interconvert internal with external metabolites)
- Rate of change concentration is sum of reaction rates.
- This is assumed to tend to zero in the long term (steady state)

・ 同 ト ・ ヨ ト ・ ヨ ト

Reactions are not enzymes.

• Enzymes are not genes.

・ロト ・回ト ・ヨト ・ヨト

$$\begin{array}{rcl} \frac{dA}{dt} &=& R_1 + R_3 - R_2\\ \frac{dB}{dt} &=& R_2 - R_3 - R_4 - R_5\\ \frac{dC}{dt} &=& R_4 \end{array}$$

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

э

э

$$\begin{array}{rcl} \frac{dA}{dt} &=& R_1 + R_3 - R_2\\ \frac{dB}{dt} &=& R_2 - R_3 - R_4 - R_5\\ \frac{dC}{dt} &=& R_4 \end{array}$$

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Or more succinctly:

$$Nv = 0$$

(* E) * E)

Or more succinctly:

$$Nv = 0$$

→ Ξ → < Ξ →</p>

Or more succinctly:

$$Nv = 0$$

伺き くほき くほう

Or more succinctly:

Nv = 0

So What ?!

v is not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

・ロト ・ 同ト ・ ヨト ・ ヨト

Nv = 0

So What ?!

v is not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

▲ ■ ▶ ▲ ■ ▶

Nv = 0

So What ?!

v is not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

< 一型

э

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

$$\mathbf{K} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \end{bmatrix} = \begin{bmatrix} 1w_1 + 0w_2 \\ 1w_1 + 1w_2 \\ 0w_1 + 1w_2 \\ 0w_1 + 0w_2 \\ 1w_1 + 0w_2 \end{bmatrix} \xleftarrow{\text{--subset}} \operatorname{dead}_{\longleftarrow}$$

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

◆□→ ◆□→ ◆三→ ◆三→

- All reactions in a subset *must* carry flux in a fixed ratio.
- Subsets have a single *net* stoichiometry.
- If any single reaction is removed from a subset, the remaining reactions will be dead.
- If one or more reactions in a subset are irreversible, the whole subset is irreversible.

See: Pfieffer et al (1999) 15, 251–257.

Significance of the kernel

- The kernel captures steady-state invariants of a network that are independent of environment, metabolite levels etc.
- Any and all steady state flux distributions can be represented as a linear combination of columns of the null space.
- A dead reaction will *always* be dead regardless of kinetic parameters.
- Reactions in subsets carry steady-state flux in fixed ratio regardless of kinetic parameters.
- Unexpected behaviour in other results can often be explained by consideration of the kernel.

・ 同 ト ・ ヨ ト ・ ヨ ト

Kernels are not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

Kernels are not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

Kernels are not unique

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

Definition: A set of reactions in a system that:

- Balance all internal metabolites.
- Respect reversibility.
- Cannot be decomposed. (ie a minimal set of reactions)
- Are associated with a single net stoichiometry involving only external metabolites (or none).

・ 同 ト ・ ヨ ト ・ ヨ ト

Non Elementary modes

イロト イポト イヨト イヨト

Non Elementary modes

イロト イポト イヨト イヨト

Non Elementary modes

イロト イポト イヨト イヨト

Elementary modes (2)

Non Elementary modes

イロト イポト イヨト イヨト

Elementary modes (2)

Non Elementary modes

イロト イポト イヨト イヨト

- Elementary modes represent independent paths in a system.
- They provide an *objective* definition of pathways.
- The set of reactions in an EM is unique.
- Every EM is associated with a net stoichiometry which may or may not be unique.
- The net metabolic behaviour of a system can always be expressed as a linear combination of its EMs.

ヘロト ヘ戸ト ヘヨト ヘヨト

So far we have considered relationships between steady-state reaction fluxes.

Can we say anything about metabolite concentrations?

< 回 > < 回 > < 回 > .

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

・ 同 ト ・ ヨ ト ・ ヨ ト

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

These relationships are called

Moiety Conservation relationships.

They can be determined by analysis of the stoichiometry matrix.

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

・ 同 ト ・ ヨ ト ・ ヨ ト

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

< 🗇 🕨

→ Ξ → < Ξ →</p>

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

.≣⇒

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

dNAD/dt = -dNADH/dt

Integrating:

NAD = -NADH + k

NAD + NADH = k

k is the conserved total.

Such relationships can be identified from the *left* null space K_I which has the property:

 $\mathbf{K}_{\mathbf{I}}\mathbf{N}=\mathbf{0}$

the dimension of which is equal to the number of conservation relationships in the system:

for the first example

 $\mathbf{K}_{I} = \begin{array}{ccc} B & C & NAD & NADH \\ 0 & 0 & 1 & 1 \end{array} (one \ conservation \ relationship)$

and for the second example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Such relationships can be identified from the *left* null space K_I which has the property:

$$K_I N = 0$$

the dimension of which is equal to the number of conservation relationships in the system: for the first example

 $\label{eq:KI} K_I = \begin{array}{ccc} B & C & NAD & NADH \\ 0 & 0 & 1 & 1 \end{array} \mbox{ (one conservation relationship)}$

and for the second example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Such relationships can be identified from the *left* null space K_I which has the property:

$$\mathbf{K}_{\mathbf{I}}\mathbf{N}=\mathbf{0}$$

the dimension of which is equal to the number of conservation relationships in the system: for the first example

 $\label{eq:KI} \textbf{K}_{I} = \begin{array}{ccc} B & C & NAD & NADH \\ 0 & 0 & 1 & 1 \end{array} \text{ (one conservation relationship)}$

and for the second example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Such relationships can be identified from the *left* null space K_I which has the property:

$$\mathbf{K}_{\mathbf{I}}\mathbf{N}=\mathbf{0}$$

the dimension of which is equal to the number of conservation relationships in the system: for the first example

$$\mathbf{K}_{I} = egin{array}{cccc} B & C & NAD & NADH \\ 0 & 0 & 1 & 1 \end{array}$$
 (one conservation relationship)

and for the second example

$$\mathbf{K}_{I} = \begin{array}{cccccccc} \mathsf{B} & \mathsf{C} & \mathsf{ADP} & \mathsf{ATP} & \mathsf{Pi} \\ \mathsf{0} & \mathsf{0} & \mathsf{1} & \mathsf{1} & \mathsf{0} \\ \mathsf{0} & \mathsf{1} & \mathsf{0} & \mathsf{1} & \mathsf{1} \end{array}$$
two conservation relationships

・ 同 ト ・ ヨ ト ・ ヨ ト

Such relationships can be identified from the *left* null space K_I which has the property:

$$\mathbf{K}_{\mathbf{I}}\mathbf{N}=\mathbf{0}$$

the dimension of which is equal to the number of conservation relationships in the system: for the first example

$$\label{eq:KI} \textbf{K}_{I} = \begin{array}{ccc} B & C & NAD & NADH \\ 0 & 0 & 1 & 1 \end{array} \mbox{ (one conservation relationship)}$$

and for the second example

・ 同 ト ・ ヨ ト ・ ヨ ト

Notes:

- **K**_I is not always unique there may not be a single way to represent the conservation relationships in a system.
- Negative elements in **K**_I do not imply negative concentrations.
- It is not possible to guarantee that an all positive K_I can be found.

(4回) (4回) (4回)

Significance of KI

- Very important consideration in design of kinetic modelling software.
- Introduces "hidden" parameters in kinetic models.
- Changing concentrations in a model can lead to unexpected results.
- Need to identify the *dependent* metabolite in each relationship.
- The left null-space has received relatively scant attention and represents a potentially fruitful area for further theoretical research.

ヘロト 人間 ト ヘヨト ヘヨト

From consideration of the stoichiometry matrix, along with assumptions about reaction reversibility, we can:

• Identify independent routes through metabolic networks.

• Identify sets of reactions that carry flux in fixed ratios.

 Identify groups of metabolites with interdependent concentration values.

ヘロト 人間 ト ヘヨト ヘヨト

We have the *theoretical* tools to answer the questions posed earlier .

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles

くロト (過) (目) (日)

э

Example - WLP (Practical 4)

Questions:

- What combinations of inputs can be used to generate ATP?
- How many independent routes (aka *Elementary Modes*) are their?
- Which has the optimal yield (ATP/Ac)?

Example - WLP (Practical 4)

Questions:

- What combinations of inputs can be used to generate ATP?
- How many independent routes (aka *Elementary Modes*) are their?
- Which has the optimal yield (ATP/Ac)?