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The Problem

Glucose > Amino acids
-
Oxygen DNA
= —
Phosphate RNA
Sulphate Lipids
—
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Nitrogen > Carbohydrates
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How to connect input(s) to output(s) ?7?
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What do we want to know - can we:
@ Determine network behaviour (assign fluxes to reactions)?
@ Predict the effect of network modification?

@ Identify the modification needed to achieve a specific
effect?
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Example - The Woods-Ljungdahl Pathway
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Example - The Woods-Ljungdahl Pathway

Energy Conservation Woods-Ljungdahl Pathway Glycolysis
-1 - (! Tt
* | ] wes co |..ms1
Ll L— L2 L
Electron Bifurcation HDCR ReFdx 2H*  H,0 OxFdx o
nap*
2H,; H, CReFdx
or
Rem.) l NADH
Formate ate
NADH NAD*
FTHES Con Cofesp ReFdx CO, CoAOxFdx
Acetyl-CoA ‘\ & ) ) Pyruvate
ATP | THE CODHACS PFOR
Nat 3 NA ADP+Pi i
RNF e FormyITHE
Acetate-p
H MeCoFeSP ADP
ADP+Pi| ATP MTHFC Bl
ReFdx NAD* H,0 ACK ATP
OxFdx NADH Methenyl-THF r——
NADH CoFesp.
MTHFD ——
-
R0 NADH NAD*
Methylene THF Methyl-THF
MTHFR

Questions:

@ Which reactions are essential?
@ What combinations of inputs can be used to generate ATP?

@ What does knowledge of one metabolite concentration tell
us about the concentration of another?
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Definition of a metabolic model

@ A set of External metabolites - inputs and outputs.

@ A set of Internal metabolites - no net production or
consumption.

© A set of reactions that inter-convert them defined by:

e Stoichiometry.
o Directionality.

o Reversibility.
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Fundamental assumptions

@ Reactions interconvert substrates and products whilst
conserving mass.

@ Transporters are a special case of reaction (interconvert
internal with external metabolites)

@ Rate of change concentration is sum of reaction rates.

@ This is assumed to tend to zero in the long term (steady
state)
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@ Reactions are not enzymes.

@ Enzymes are not genes.
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Modelling networks of reactions

R2
1 m R5
XA——9pA B——» x B
v%
R3
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Modelling networks of reactions
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Modelling networks of reactions
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Modelling networks of reactions
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Modelling networks of reactions

XA—o9p A B——p x B
v%
R3
C
Ry
g—g 1T -1 1 0 0]]| R 0
Bl=l0 1 -1 -1 —1 Ry | =10
%? o 0 o 1 0 Ry 0
Rs
Or more succinctly:
Nv=0
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Modelling networks of reactions

R2
1 m .
XA——p A B——» x B
v\k
Rg
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Nv=0
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Modelling networks of reactions

R2
XA——p A B——» x B
R3
C
Nv=0
So What ?!
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Modelling networks of reactions

R2
XA——p» A B——» x B
Rg
C
Nv=0
So What ?!

v is not unique
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Kernels
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Kernels
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Kernels
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Kernels
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Kernels
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More about subsets

@ All reactions in a subset must carry flux in a fixed ratio.
@ Subsets have a single net stoichiometry.

© If any single reaction is removed from a subset, the
remaining reactions will be dead.

© If one or more reactions in a subset are irreversible, the
whole subset is irreversible.

See: Pfieffer et al (1999) 15, 251-257.
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Significance of the kernel

@ The kernel captures steady-state invariants of a network
that are independent of environment, metabolite levels etc.

@ Any and all steady state flux distributions can be
represented as a linear combination of columns of the null
space.

@ A dead reaction will always be dead regardless of kinetic
parameters.

@ Reactions in subsets carry steady-state flux in fixed ratio
regardless of kinetic parameters.

@ Unexpected behaviour in other results can often be
explained by consideration of the kernel.
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Kernels are not unique
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Kernels are not unique

R2
1 m .
XA——p A B——» x B
v\k
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Kernels are not unique
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Elementary modes (1)

Definition:
A set of reactions in a system that:

@ Balance all internal metabolites.

@ Respect reversibility.

@ Cannot be decomposed. (ie a minimal set of reactions)

@ Are associated with a single net stoichiometry involving
only external metabolites (or none).
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Elementary modes (2)

R2
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Elementary modes (2)

Elementary modes
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Elementary modes (2)

Elementary modes
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Elementary modes (2)

Non Elementary modes
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Elementary modes (2)

Non Elementary modes
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Elementary modes - Summary

@ Elementary modes represent independent paths in a
system.

@ They provide an objective definition of pathways.
@ The set of reactions in an EM is unique.

@ Every EM is associated with a net stoichiometry which may
or may not be unique.

@ The net metabolic behaviour of a system can always be
expressed as a linear combination of its EMs.
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So far we have considered relationships between steady-state
reaction fluxes.

Can we say anything about metabolite concentrations?
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Conserved cycles

Consider a simple cycle:
R4

Y

NADH  NAD

X A=—p B C =———pp-x_C
R1 R2 R3
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Conserved cycles

Consider a simple cycle:
R4

NADH  NAD

X Am———3 B C ———»x C
R1 R2 R3

From inspection NAD + NADH are constant.
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Conserved cycles

Consider a simple cycle:
R4
NADH  NAD
X_A=———3p B c ———»x C
RI R2 R3
From inspection NAD + NADH are constant.

A slightly more complex cycle:
R4

£ N\

ATP  ADP Pi

XA——— B Li» C —Z»x_c
R

R2 R3
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Conserved cycles

Consider a simple cycle:
R4
NADH  NAD
X_A=———=3 B C ——»x C
R1 R2 R3

From inspection NAD + NADH are constant.

A slightly more complex cycle:
R4

£ N\

ATP  ADP Pi

KA——— B Li» c —Z»x_c
R

R2 R3
From inspection ADP + ATP and ATP + Pi are constant (?).

Mark Poolman Null Space, Subsets, Elementary Modes and Conserved Cycles




Conserved cycles

These relationships are called

Moiety Conservation relationships.

They can be determined by analysis of the stoichiometry matrix.
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Conserved cycles

R1 R2 R3 R4

B 1 -1 0 O

N= C o 1 -1 0
NAD O 1 0o -1

NADH 0 -1 O 1
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Conserved cycles

R1 R2 R3 R4

B 1 -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0
NAD O 1 0o -1
NADH 0 -1 O 1
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Conserved cycles

R1 R2 R3 R4

B 1 -1 0 O dB/dt = R1 - R2

N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1
NADH 0 -1 O 1
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Conserved cycles

R1 R2 R3 R4

B 1 -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4

NADH 0 -1 O 1
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Conserved cycles

R1 R2 R3 R4
i -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4
NADH 0 -1 O 1 dNADH/dt = R4 - R2
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Conserved cycles

R1 R2 R3 R4
i -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4
NADH 0 -1 O 1 dNADH/dt = R4 - R2

dNAD/dt = —dNADH/dt
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Conserved cycles

R1 R2 R3 R4
i -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4
NADH 0 -1 O 1 dNADH/dt = R4 - R2

dNAD/dt = —dNADH/dt

Integrating:
NAD = —NADH + k
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Conserved cycles

R1 R2 R3 R4
i -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4
NADH 0 -1 O 1 dNADH/dt = R4 - R2

dNAD/dt = —dNADH/dt
Integrating:
NAD = —NADH + k

NAD + NADH = k
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Conserved cycles

R1 R2 R3 R4

1 1 0 0 dB/dt = R1 - R2

N = cC 0 1 -1 0 dC/dt = R2 - R3

NAD 0 1 0 -1 dNAD/dt=R2-R4

NADH 0 -1 0 1 dNADH/dt=R4-R2
dNAD/dt = —dNADH/dt

Integrating:
NAD = —NADH + k

NAD + NADH = k

k is the conserved total.
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
for the first example

B C NAD NADH

Ki=09 o0 1 1
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
for the first example

B C NAD NADH

Ki=09 o0 1 1

(one conservation relationship)
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
for the first example

B C NAD NADH

Ki=09 o0 1 1

(one conservation relationship)

and for the second example

B C ADP ATP Pi
Ki=0 0 1 1 0
0o 1 0 1 1
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
for the first example

B C NAD NADH

Ki=09 o0 1 1

(one conservation relationship)

and for the second example

B C ADP ATP Pi
Ki= 0 0 1 1 0 two conservation relationships
0o 1 0 1 1
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Structural analysis - The left Null-space

Notes:

@ K is not always unique - there may not be a single way to
represent the conservation relationships in a system.

@ Negative elements in K; do not imply negative
concentrations.

@ Itis not possible to guarantee that an all positive K; can be
found.
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Significance of K|

@ Very important consideration in design of kinetic modelling
software.

@ Introduces “hidden” parameters in kinetic models.

@ Changing concentrations in a model can lead to
unexpected results.

@ Need to identify the dependent metabolite in each
relationship.

@ The left null-space has received relatively scant attention

and represents a potentially fruitful area for further
theoretical research.
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Conclusions

From consideration of the stoichiometry matrix, along with
assumptions about reaction reversibility, we can:

@ |dentify independent routes through metabolic networks.
@ Identify sets of reactions that carry flux in fixed ratios.

@ |dentify groups of metabolites with interdependent
concentration values.
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We have the theoretical tools to answer the questions posed
earlier .
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Example - WLP (Practical 4)

Woods-Ljungdahl Pathway Glycolysis

Energy Conservation
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Acetate-p
He MeCoFesP op
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Acetate
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a0 NADH NaD*
Methylene-THF Methy|THF
MTHFR
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Example - WLP (Practical 4)

Energy Conservation Woods-Ljungdahl Pathway Glycolysis
I .l - =
L'_"_‘I (el [ —
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2H, H, Cwerux
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ReFdx ..) NADH
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2 o ncetyicon AL 1) Pyruvate
ATP - THF CODH-ACS PFOR

nat 3 Nat ADP4PI [
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ReFdx NaD* H,0 ACK ATP
«Fdx Metheny|-THF —
MeT

OxFdx  NADH
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NADH CoFesp
MTHFD
+
a0 NADH NAD*
Methylene THF Methyl-THF

MTHFR

Questions:

@ What combinations of inputs can be used to generate ATP?
@ How many independent routes (aka Elementary Modes)

are their?
@ Which has the optimal yield (ATP/Ac)?
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