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Recap - Structural Modelling

Null space: Encapsulates all possible steady-state solutions.

Enzyme subsets: Sets of reactions carrying flux in fixed ratio.

Elementary modes: Minimal, independent pathways in a
system

Conserved cycles: Sets of metabolites whose total
concentration is fixed.
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Technical challenges with large models

Null space: Readily calculated, but can’t analyse by
inspection.

Enzyme subsets: Not as generally useful compared to small
models.

Elementary modes: Impractical.

Conserved cycles: Not as generally useful compared to small
models.
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Other disadvantages of null-space analysis

Provides a rather ‘unfocussed’ view of the system.

Does not (implicitly) take into account thermodynamics.

Hard to integrate experimental flux observations.

Less interpretable for large (genome-scale) models.

(Still very useful for validation).
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Application of LP to metabolic networks - FBA

Linear programming calculates a specific solution to the
equation:

Nv = 0

Subject to some additional information supplied by the user - at
least one flux value specified.
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Application of LP to metabolic networks - FBA

min/max : vtargs ←− objective

subject to
{

Nv = 0 ←− steady state
maxi ≥ vi ≥ mini ←− flux constraints

Typical Objectives:

Maximise output(s) (need to fix input(s))

FBA maximise growth rate for fixed input.

Minimise input(s) (need to fix output(s))

Minimise all reactions (need to fix input(s) and/or output(s))
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Application of LP to metabolic networks - FBA

min/max : vtargs ←− objective

subject to
{

Nv = 0 ←− steady state
maxi ≥ vi ≥ mini ←− flux constraints

Typical flux constraints:

mini = maxi ̸= 0 : flux is fixed

mini = maxi = 0 : reaction is knocked out.

mini = 0,maxi ̸= 0 : force irreversible L->R

mini ̸= 0,maxi = 0 : force irreversible R->L
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Advantages of FBA

Very fast.

Integrates flux data.

Easy to reformulate the problem and solve again.

The reactions in a solution can be extracted from the main
model for more detailed analysis.
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Disadvantages of FBA

Only provides a single solution.

Potential for numerical instability (esp. if maximising).

Potential for multiple optima.

Choice of the objective is subjective (!)
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Exploring the optimal space - constraint scanning

minimise : vtargs ←− objective

subject to
{

Nv = 0 ←− steady state
maxi ≥ vi ≥ mini ←− flux constraints

Find a solution.

Increment one (or more) of the constraints vi

Solve again.

Repeat to build up a set of solutions.

Identify correlated responses in the solution set.
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Example - identifying a catabolic core

A study of Salmonella spp.

Antibiotic challenges generate a stress response.

This increases the demand for ATP.

How to identify which reactions will respond to this
demand?
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Example - identifying a catabolic core

Scan over a range of ATP demand fluxes (while synthesising
biomass) and identify responding reactions.

minimise : |v| ←− objective−min. sum of fluxes

subject to


Nv = 0 ←− steady state constraint
vj = tj ←− output transporters, constant
vATPase = JATPase ←− ATP hydrolysis, varied
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Results - flux response

F
lu

x 
[m

m
o

l (
g

 D
.W

.)
-1

h
-1

]

-5

0

5

10

15

20

80 100 120 140 160 180 200

ATPase flux [mmol (g D.W.)
-1

h ]
-1

FumHydr
THX 

2-KGDH

0

10

20

30

40

50

PGLactonase
AspTrans

FBPAldolase

Enolase

Mark Poolman Null space and Linear Programming



Results - flux correlations
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33 reactions correlated with imposed ATPase.
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Results - catabolic core
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Results - condensed network
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