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How to connect input(s) to output(s) ?7?
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What do we want to know - can we:
@ Determine network behaviour (assign fluxes to reactions)?
@ Predict the effect of network modification?

@ Identify the modification needed to achieve a specific
effect?
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Example - The Woods-Ljungdahl Pathway
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TO DECIDE: We need a suitable, realistic, small model to
illustrate and to then use as a basis for the following
practical. Do we stick with WLP (a bit exotic) or use
something else?
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TO DECIDE: We need a suitable, realistic, small model to
illustrate and to then use as a basis for the following
practical. Do we stick with WLP (a bit exotic) or use
something else?
Questions:

@ Which reactions are essential?
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Il Remove before use !!

The first few slides here replicate trhe L1 material for pedagogic
correctness.

Remove/edit as you think best
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Modelling networks of reactions
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Significance of the kernel

@ The kernel captures steady-state invariants of a network
that are independent of environment, metabolite levels etc.

@ Any and all steady state flux distributions can be
represented as a linear combination of columns of the null
space.

@ A dead reaction will always be dead regardless of kinetic
parameters.

@ Reactions in subsets carry steady-state flux in fixed ratio
regardless of kinetic parameters.

@ Unexpected behaviour in other results can often be
explained by consideration of the kernel.
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Elementary modes (1)

Definition:
A set of reactions in a system that:

@ Balance all internal metabolites.

@ Respect reversibility.

@ Cannot be decomposed. (ie a minimal set of reactions)

@ Are associated with a single net stoichiometry involving
only external metabolites (or none).
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Elementary modes - Summary

@ Elementary modes represent independent paths in a
system.

@ They provide an objective definition of pathways.
@ The set of reactions in an EM is unique.

@ Every EM is associated with a net stoichiometry which may
or may not be unique.

@ The net metabolic behaviour of a system can always be
expressed as a linear combination of its EMs.
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So far we have considered relationships between steady-state
reaction fluxes.

Can we say anything about metabolite concentrations?
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Conserved cycles
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Conserved cycles

Consider a simple cycle:
R4
NADH  NAD
X_A =3 B C ———»x C
R1 R2 R3

From inspection NAD + NADH are constant.

A slightly more complex cycle:
R4

£ N\

ATP  ADP Pi

XA——— B Li» C —Z»x_c
R

R2 R3
From inspection ADP + ATP and ATP + Pi are constant (?).
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Conserved cycles

These relationships are called

Moiety Conservation relationships.

They can be determined by analysis of the stoichiometry matrix.
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Conserved cycles

R1 R2 R3 R4
i -1 0 O dB/dt = R1 - R2
N= C o 1 -1 0 dC/dt = R2 - R3
NAD O 1 o -1 dNAD/dt = R2 - R4
NADH 0 -1 O 1 dNADH/dt = R4 - R2

dNAD/dt = —dNADH/dt
Integrating:
NAD = —NADH + k

NAD + NADH = k

k is the conserved total.
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:
KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
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Structural analysis - The left Null-space

Such relationships can be identified from the /eft null space K;
which has the property:

KIN=0

the dimension of which is equal to the number of conservation
relationships in the system:
for the first example

B C NAD NADH

Ki=09 o0 1 1

(one conservation relationship)

and for the second example

B C ADP ATP Pi
Ki= 0 0 1 1 0 two conservation relationships
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Structural analysis - The left Null-space

Notes:

@ K is not always unique - there may not be a single way to
represent the conservation relationships in a system.

@ Negative elements in K; do not imply negative
concentrations.

@ Itis not possible to guarantee that an all positive K; can be
found.
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Significance of K|

@ Very important consideration in design of kinetic modelling
software.

@ Introduces “hidden” parameters in kinetic models.

@ Changing concentrations in a model can lead to
unexpected results.

@ Need to identify the dependent metabolite in each
relationship.

@ The left null-space has received relatively scant attention
and represents a potentially fruitful area for further
theoretical research.
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Conclusions

From consideration of the stoichiometry matrix, along with
assumptions about reaction reversibility, we can:

@ |dentify independent routes through metabolic networks.
@ Identify sets of reactions that carry flux in fixed ratios.

@ |dentify groups of metabolites with interdependent
concentration values.
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We have the theoretical tools to answer the questions posed
earlier .
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Example - WLP (Practical 4)
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Questions:
@ What combinations of inputs can be used to generate ATP?

@ How many independent routes (aka Elementary Modes)

are their?
@ Which has the optimal yield (ATP/Ac)?
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