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Importance of Plants
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Photosynthesis

Photosynthesis is the process by which plants, algae and some
bacteria use carbon dioxide and light energy to make sugar
molecules and oxygen
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Photosynthesis

The process of photosynthesis can be broadly classified into two
phases:

Light dependent process: Photophosphorylation

Occurs in thylakoid membrane
Light energy captured by chlorophyll molecule to produce
energy in the form of NADPH and ATP

Light independent process: Calvin Cycle

Occurs in chloroplast stroma
Energy produced during the light reaction is used to fix the
inorganic carbon to produce sugar
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Photophosphorylation
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Photophosphorylation

Non-Cyclic Photophosphorylation/Non-Cyclic Light Reaction

Both PSI and PSII are involved
Electrons travel in a non-cyclic manner
Electron from PSI is accepted by NADP
Both ATP and NADPH is produced
Oxygen is evolved from photolysis

Cyclic Photophosphorylation/Cyclic Light Reaction

Only PSI is involved
Electrons travel in a cyclic manner
Electron travels back to PSI
Only ATP is produced
Oxygen is not evolved as photolysis is absent
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Photophosphorylation - Calvin Cycle
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Stoichiometry of Light Reactions

Light Non-Cyclic Reaction:

56 Photon + 18 ADP + 14 NADP + 18 Pi + 14 H2O →
7 O2 + 14 Proton + 14 NADPH + 18 ATP

Light Cyclic Reaction:

14 Photon + 6 ADP + 6 Pi → 6 ATP + 6 H2O
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Calvin Cycle

The Calvin cycle was discovered by Melvin Calvin, James
Bassham, and Andrew Benson at the University of California,
Berkeley in 1950

It is a light independent process that uses the energy from
light reactions for carbon fixation

Phases of Calvin Cycle:
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Calvin Cycle
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Oxidative Pentose Phosphate
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Role of Mitochondria
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Plant metabolism is complex

Plant metabolism is a complex process involving several
enzymes

The performance and metabolism of plant is significantly
affected by several environmental factors such as light,
temperature and soil salinity
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Introduction

The main objective of this project, as a part of EU funded
AccliPhot consortium, is to further develop and analyse the
GSM of Arabidopsis with particular focus on photosynthetic
metabolism.

Identify potential metabolic responses under changing light
condition.
Investigate the physiological impact of Calvin cycle enzymes
knockouts in the plant.
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Construction and validation of GSM

GSM of Arabidopsis was constructed using annotations on
AraCyc 11.5 and compartmentalised as per M Cheung et al
(2013).

Model curation

mass conservation
energy conservation
inconsistencies

Biomass production

amino acids
nucleotides
lipid
starch
cellulose
chlorophyll A and B
lignin

The model is ready for analysis
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General properties of the GSM

Properties Specification

Source of carbon CO2

Source of energy Light / Starch
Total number of reactions 2588
Total number of metabolites 2481
Total number of transporters 234
External transporters 55
Inter-compartmental transporters 179
Compartments Cytoplasm, Plastid, Mitochondria,

Peroxisome, Vacuole

Total number of reactions required to produce all biomass varies
from 331 - 336 reactions depending upon the environmental
condition.
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Motivation

Increasing demand of food in the - compelling need to
improve productivity of crop plants

Many in vivo and in silico analysis suggest that improving
photosynthetic capacity of plants can help improve crop
productivity

Plants with increased or reduced activity of individual enzymes
from the Calvin cycle have been used to study the regulation
of photosynthetic carbon flow

Collaborating partners in the AccliPhot consortium at ETH
Zurich performed experimental work to knockout Calvin cycle
enzymes
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The Calvin Cycle
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Methodology

FBA was used to predict the feasibility of the solution in WT
and all the mutants

Minimisation of total reaction flux was used as objective
function.

minimise : v

subject to



Nv = 0
vi ..j = ti ..j
vATPase = ATPase
vν = ν
vLightNonCyc ≥ vLightCyc

vRubiscoCarboxylase + vRubiscoOxygenase = 0.4
vKO−rxn = 0

(1)

The change in reaction fluxes as the effect of knockout was
noted.
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Central carbon metabolism of SBPase knockout mutant
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Central carbon metabolism of FBPase KO mutant
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Experimental results

The homozygous plants are compromised in growth, but are viable.
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PRK KO mutant

No feasible LP solution was found for PRK knockout and the
experimental evidence also shows that the mutant plants were not
viable.
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Summary of the KO investigation

Enzyme Model prediction Experimental result

SBPase Viable Viable
FBPase Viable Viable
PRK Non-viable Non-viable

Kailash Adhikari Calvin cycle enzymes knockout in GSM of Arabidopsis thaliana



Conclusion

Correctly predict the viability or non-viability of all individual
KO mutants

Highlighted a novel role of the enzyme transaldolase in
photosynthetic metabolism

Propose newer features of the metabolic network such as the
complementary roles of SBPase and FBPase

Portrayed the need for further experimental data and
development of more theoretical methods to accurately
predict the phenotypic impacts of plant mutation
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Part -II

Light Scan Analysis : Investigate energy dissipation mechanism
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Investigating energy dissipation mechanism
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Using GSMs to investigate energy dissipation mechanism

The changes in light intensity affects rate and regulation of
light harvesting, photochemical reactions, electron transport,
production of energy components, synthesis of end products
like starch, lipids and their use to drive growth and
development.

The turnover of energy components, ATP, NADP and
NADPH happens in seconds, as response to the changing
light, which ultimately affects the long term acclimation and
growth of the organisms.

Hence, from the modelling point of view, we are interested in
identifying all possible metabolic routes that consumes these
energy components, the production of which is in high
amount under supra optimal light conditions, and act as
potential energy dissipation mechanism thus protecting the
organisms form photo-damage.
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Methodology

The models were condensed to photon absorbing core model -
reactions that have some degree of correlation with the
photon consuming reaction

reactions that are assumed to be active under light conditions,
and are therefore, potentially involved in various energy
dissipation processes

photosynthetic core model was used to generate a metabolic
tree representing the relationship between reactions

The set of reactions that cluster together in such tree are
more likely to operate together and have similar biological
significance compared to others in the adjoining clusters

Set of reactions that can operate as metabolic cycles were
identified
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Metabolic cycles

sets of reactions operating in a metabolic system, whose net
stoichiometry either hydrolyses ATP or oxidises a reductant
while the overall net change of the process is only the
absorbtion of energy with no net involvement of any other
external metabolites other then H2O for ATP hydrolysis and
O2 for NADPH oxidation
They include pathways with reactions operating in cyclic
manner such that the cycle dissipates energy but without any
net anabolic or catabolic transformation
only few of them have been identified
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Correlation tree
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metabolic cycles
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Validation with proteomics data

Proteomics expression can be used as a qualitative indicator
of the metabolic activity. Thus for each reaction, the
corresponding genes were identified and mapped to their
respective protein count. In the case of many to one or many
to many relationships between genes and reactions, the gene
with highest protein count was considered for the comparison

Proteomics, transcriptomics and metabolomics data (omics)
can be used to study condition dependent changes into
metabolic activity of the organism using metabolic models as
a platform.
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Light Scan Analysis

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

SUCROSE_bm

Photon Flux

R
ea

ct
io

n 
Fl

ux

A B C D FE

Cellulose_bm

GLC_bm

Starch_bm

Kailash Adhikari Calvin cycle enzymes knockout in GSM of Arabidopsis thaliana



Final network diagram
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Discussion

investigation was particularly focused to comprehensively
identify the full range of potential energy dissipating cycles
occurring in different part of metabolism in GSMs

Using correlation coefficient analysis and MILP, it was possible
to systematically identify all possible combinations of
reactions in the model metabolic networks that could
collectively function to dissipate excess energy by hydrolysis of
ATP or oxidation of equivalent reductants.

Some of the cycles identified from both the meth-
ods are more commonly known and have experimental evidence
Geig91,Rohw01,Koch05oftheir invivoactivitywhilesomeothershavebeenreportedfromcomputationalanalysis.Themethodsusedherehavebeenabletoidentifyallthosereportedpreviouslyandfurtherproposeadditionalcycleswithapotentialfunctioninenergydissipation.Intotal7outof 56nodesincaseoftheA.thaliana, and6outof 34incaseoftheC .reinhardtii , identifiedfromthecorrelationmethod , havebeenreportedpreviouslyintheliterature.Asitisdifficulttoextensivelycharacteriseallthecyclesidentifiedfromtwomethods, proteomicsdataobtainedunderhighlightconditionswasusedheretoqualitativelycomparewhichofthecyclesidentifiedfromthemodelaremorelikelytooccur invivo.

experimental support for metabolic cycles identified

Increase in biomass composition after removing reactions
involved in energy dissipation
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Final Conclusion

GSM represents the metabolic behavior in greater details and
can be used to investigate metabolic adjustments under
different conditions.

Genome scale metabolic models can be used in aid with other
modelling tools to investigate organism behaviors, under
various environmental conditions.
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Thank you!

Thank you for your attention!
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