Model-assisted engineering of *Escherischia coli* for biofuel production

David Fell, Mark G Poolman, Hassan Hartman Oxford Brookes University

Zia Fatma, Shireesh Srivastava, Syed Shams Yazdani ICGEB, New Delhi

ICGEB Delhi 2011

Biofuels

Ethanol	Corn or potato starch, sugar cane	Lignocellulosic waste
Butanol	Corn starch	Lignocellulosic and food waste
Biodiesel (alkanes, esterified fatty acids)	Palm oil, oil seeds	Photosynthesis; waste cooking oil; ? lignocellulosic waste

Pilot plant for production of ethanol from lignocellulosic waste, Kashipur, India. Designed by ICT Mumbai Centre for Energy Biosciences. Photo: courtesy of Prof A Unite 2018 Optimising Alkane Production

Microbial Routes to Biodiesel

- Cyanobacteria naturally produce alkanes and long-chain fatty alcohols by photosynthesis.
- Some algae and yeasts produce high levels of triglycerides as storage compounds, which could be trans-esterified to fatty methyl esters.
- Engineering of bacteria or yeasts with the cyanobacterial pathway to generate alkanes nonphotosynthetically from C-containing substrates

Approach in this Study

- Used *E coli* as the host organism because of:
 - Detailed knowledge of its metabolic network
 - Extensive molecular genetics tools that facilitate experimental modification of metabolism
 - Grows readily
 - Native ability to use pentoses (such as xylose from lignocellulose wastes) in addition to glucose

Heterologous Alkane Synthesis Pathway

- The pathway branches off from fatty acid synthesis by intercepting acyl-ACP intermediates.
- AAR, acyl-ACP reductase, EC 1.2.1.80 from *Synechococcus elongatus* releases a long-chain aldehyde, e.g.: palmitoyl-ACP + NADPH + H⁺ -> palmitaldehyde + NADP⁺ + ACP
- ADO. aldehyde oxygenase deformylating, EC 4.1.99.5 from *Nostoc punctiforme* :

long-chain aldehyde + O_2 + 2NADPH + 2H⁺ -> alkane + formate + H_2O + 2NADP⁺

The reaction requires ferredoxin and ferredoxin reductase

Alternative to Long-Chain Alcohols

• AAR, acyl-ACP reductase, EC 1.2.1.80 from *Synechococcus elongatus* releases a long-chain aldehyde, e.g.:

palmitoyl-ACP + NADPH + H+ -> palmitaldehyde + NADP+ + ACP

 YbbO, NADP+-dependent aldehyde reductase, EC 1.1.1.2 from E. coli, overexpressed: long-chain aldehyde + NADPH + H+ -> long-chain alcohol + NADP+

Optimisation at ICGEB

- Different options of enzyme sources (after codon optimisation) and promoters were explored via expression in medium-copy number plasmids.
- A fusion protein of AAR and ADO was tested but not found better than enhanced expression of separate genes with T5 promoters.
- For fatty alcohols, expression of AAR and YbbO from T5 promoters was found better than expression of AAR alone and reliance on native activity of *E coli* alcohol dehydrogenases.

Outcome for Alkanes

Outcome for Strain Selection

Modelling for Improved Productivity

Metabolic Modelling Methods

Structural modelling techniques

- need an accurate reaction list from which to generate a stoichiometry matrix; assume metabolic steady state.
- show existence (and number) of feasible metabolic routes; optimal conversion stoichiometries; network flux values.

Metabolic Modelling Methods

Kinetic modelling techniques

- need a reaction list and full kinetic description of each enzyme/step.
- predict time-courses, steady-state values of reaction fluxes and metabolite concentrations.
- allows sensitivity analysis (Metabolic Control Analysis) to compute dependence of fluxes and concentrations on enzyme activities.

Structural Modelling Methods

Elementary modes analysis

- all feasible routes (modes) through a network from nutrients to metabolic products;
- - network flux values and product yields;
- good for designing knock-out strategies to eliminate metabolism to unwanted products;
- computationally limited to small to medium sized metabolic networks.

(Schuster, Dandekar & Fell, 1999, 2000)

Structural Modelling Techniques

Linear programming (LP or Flux Balance Analysis)

- incorporates known metabolic properties, such as nutrient uptake rates, as constraints;
- computationally feasible even on the largest (genomescale) metabolic models;
- can be used to design over-expression strategies for increasing productivity;
- determines the optimal network route to achieve a specified metabolic objective;
- several techniques for design of knock-out strategies, though very large models produce less clear results;
- •Basic method only produces a single solution; finding multiple optima or near-optimal solutions is more complex.

(Fell & Small, 1985; Varma & Palsson, 1993)

Our Modelling Approach

Though an elementary modes analysis would potentially have been feasible:

- As alkanes are not catabolic products, merely cutting our routes to other products would not necessarily induce alkane synthesis, and
- We expected to have to over-express parts of central carbon metabolism to supply enough substrate to allow significantly increased flux through the fatty acid synthesis pathway.

We therefore opted for a linear programming approach.

The Model

- The model was based on a central carbon metabolism (CCM) model developed by Trinh, Unrean & Srienc (2008).
- It was reconstructed using *ScrumPy* from the EcoCyc database, plus the additional heterologous reactions to alkane.
- A single, representative alkane pentadecane was modelled as output; the carbon source was glucose in aerobic conditions.
- Growth of the cell was modelled by withdrawal of a small set of CCM intermediates at appropriate rates established from larger-scale *E coli* models.
- The model has 74 reactions and 61 metabolites.

June 2018

Initial Model Analysis

- 1. The model was checked for stoichiometric and energetic consistency.
- 2.LP was used (with ScrumPy) to check the ability to supply biomass precursors from glucose at a rate equivalent to a growth rate of 1 g dcw.h⁻¹ (as a constraint), with minimisation of total flux in the network as the optimisation criterion.
- 3. The rate of glucose uptake was then set as a constraint at twice its value in the previous solution to model the fate of excess carbon intake. Only acetate and lactate were formed in addition; no pentadecane. June 2018

Constraint Scanning

- The model can be solved for simultaneous production of biomass and pentadecane by imposing these as constraints.
- However, if we use ScrumPy to compute a series of LP solutions for fixed biomass but pentadecane from 0 to 2 mmol.(gDW.h)⁻¹, we can see how fluxes through the network have to change to support alkane synthesis.

Constraint Scanning Alkane Production

Optimising Alkane Production

Reaction Correlations

June 2018

Another View ...

June 2018

Optimising Alkane Production

... continued

G6PDH Over-Expression

- On the basis that large relative increases in flux with pentadecane production could indicate steps that might become limiting, glucose-6-phosphate dehydrogenase (G6PDH) was selected as a target for over-expression.
- This was represented in the model by setting its flux to twice the value needed for biomass formation. Solving the model with this as a constraint only resulted in extra flux being diverted into the Entner-Duodoroff pathway, and then from pyruvate to PEP via PEP synthase with no change in other outputs apart from CO₂.

Knock-out Selection

- As the increased C-flux was not reaching alkane, we modelled a knockout of the ED pathway by constraining the flux of the reaction catalysed by the *edd* gene product to zero, resulting in small amounts of formate and alkane.
- This was followed by deleting the PEP synthase reaction (Δpps), which resulted in larger amounts of formate, alkane and lactate.
- As additional products appeared, we modelled additional knock-outs in the branches leading to them until the only products were biomass, CO₂ and alkane.

June 2018

Knock-outs for Alkane production

Optimising Alkane Production

Experimental Implementation

G6PDH Over-expression

Optimising Alkane Production

Alkane Yields

Fatty Alcohol Production

Final Improvement

- In the final strain so far, the carbon yield from glucose was still less than the theoretical maximum attainable with simultaneous biomass synthesis.
- Analysis of the flux values in the model solutions showed that the main competitive flux for alkane was now the phospholipid synthesis for biomass.
- This was therefore attenuated by a non-lethal knockout of a phospholipid pathway gene for the final producing strain.

Increase in Yield by Growth Attenuation

Optimising Alkane Production

Overall Result

- The initial strain optimisation by ICGEB improved alkane production from an initial 2.8 mg/L to 102 mg/L.
- The further model-designed improvements led to a further increase to 425 mg/L.
- The productivity of fatty alcohols was increased even further to 1500 mg/L.
- These strains, when tested in fed-batch bioreactors produced 2.54 g/L alkane and 12.5 g/L fatty alcohol – the highest alkane yields yet reported for *E coli*.

Conclusions

- Theory-led design can narrow the search space for metabolic engineering.
- There is still a long way to go to achieve commercial alkane production by microorganisms from sustainable C-sources.
- Fatma, Z. et al Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production, Metabolic Engineering, **45**, 134-141 (2018).

Growth curves

