
Computational Representation of Metabolic
Networks

Mark Poolman

June 28, 2018

Mark Poolman Computational Representation of Metabolic Networks

This is not a programming course.

No assumption of previous programming experience.

Basic usage of a language as a tool - no technical details.

Fundamental mathematical concepts as relevant to network
analysis.

Mark Poolman Computational Representation of Metabolic Networks

This is not a programming course.

No assumption of previous programming experience.

Basic usage of a language as a tool - no technical details.

Fundamental mathematical concepts as relevant to network
analysis.

Mark Poolman Computational Representation of Metabolic Networks

Why use a language for modelling ?

Flexibility - define what you want to do.

Repeatability - apply the actions same actions to many models.

Reliability - errors are less likely to go unnoticed, code can be analysed.

Abstract concepts or large data-sets can’t always be visualised.

Mark Poolman Computational Representation of Metabolic Networks

Why Python ?

Easy to learn.

Forgiving.

Flexible.

Interactive.

High level - lets you concentrate on the problem, not the computer.

Wide range of existing software and libraries.

Free (As in Beer and Freedom).

Mark Poolman Computational Representation of Metabolic Networks

What’s in a program?

A collection of data representing some real-world entity.

A set of actions that can be performed on that data.

Some means by which the user can specify which actions to perform.

In Python (and other languages) the data and actions are both defined by Objects
(aka types).

Mark Poolman Computational Representation of Metabolic Networks

Objects and types

An object is a computational representation of something that exists in the real world.

The type (or class) of an object is defined by its properties.

Cats:

Fur colour,
Length of whiskers.

Proteins:

AA sequence,
Iso-electric point.

Mark Poolman Computational Representation of Metabolic Networks

Objects and types

The type of an object defines what it can do, e.g.

Cats can:

Sleep
Go miaow

Proteins can:

Precipitate
Catalyse a reaction

Mark Poolman Computational Representation of Metabolic Networks

Objects and types

The type of an object defines what can be done to it, e.g.

Cats can be:

Stroked
Chased

Proteins can be:

Crystallised
Digested

Mark Poolman Computational Representation of Metabolic Networks

Objects and types

The type of an object defines its interactions with other objects.

Cats can:

Reproduce with other cats
Digest a protein

Proteins can:

Bind to other proteins
Poison a cat

Mark Poolman Computational Representation of Metabolic Networks

Types and Classes - Summary

The concept of objects that have known properties, can be
acted upon and can interact with other objects is central.

Objects are abstract representations of their real-world
equivalents (including proteins and cats).

These can be combined to represent data of arbitrary size and
structure, including metabolic models and databases.

Mark Poolman Computational Representation of Metabolic Networks

Types and Classes in Python

Python defines a number of built-in fundamental classes, which can be used to create
more complex representations of real-world entities.

The distinction between types and classes in Python is historical, in modern python
they are the same thing.

Mark Poolman Computational Representation of Metabolic Networks

Types and Classes in Python - Attributes

Attributes define the properties of an object and can either be:

Data attributes MyCat.NumberOfWhiskers

OR

Method attributes MyCat.PlayWithString()

Method attributes can be passed additional information:

MyCat.GotoSleep(3600)

Method attributes can return information:

FeedNow = MyCat.IsHungry()

Mark Poolman Computational Representation of Metabolic Networks

The Boolean Class in Python

The simplest of all classes and can take the value of True or False.

FeedNow = MyCat.IsHungry()

FeedNow would be a Boolean value: MyCat is either hungry or it is not.

Mark Poolman Computational Representation of Metabolic Networks

Python Number Classes

Numbers come in two main types: integer and float.

They behave mainly as expected

But see practical.

Mark Poolman Computational Representation of Metabolic Networks

Python String Class

Strings are sequences of characters, often used for names and simple descriptions,
but could also represent an entire document.

Create an object called text of type string:

>>> t e x t = "My cat p lays wi th s t r i n g "

It has properties, e.g. length:

>>> len (t e x t)
24

It can be acted upon, e.g. printed:

>>> pr in t t e x t
My cat p lays wi th s t r i n g

It can interact with other objects:

pr in t t e x t + " and mice "
My cat p lays wi th s t r i n g and mice

Mark Poolman Computational Representation of Metabolic Networks

Compound types

Compound types allow arbitrary collections of objects to be held together. The two
major compound types are:

Lists: Items are stored in order and are referenced (indexed) by an integer.

Dictionaries: Items have no implicit order and can be indexed by a variety of
types (commonly strings)

Mark Poolman Computational Representation of Metabolic Networks

Compound types - Lists

Lists hold collections of objects in order:

Mark Poolman Computational Representation of Metabolic Networks

Compound types - lists

Lists hold collections of objects in order: {
List

Mark Poolman Computational Representation of Metabolic Networks

Compound types - lists

Lists hold collections of objects in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

Mark Poolman Computational Representation of Metabolic Networks

Compound types - lists

Lists hold collections of objects in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

0 1 2 3 4
Index

Mark Poolman Computational Representation of Metabolic Networks

Compound types - lists

Lists hold collections of objects in order: {
List

Item

A

Item

B

Item

C

Item

D

Item

E

-5 -4 -3 -2 -1Index

Mark Poolman Computational Representation of Metabolic Networks

Compound types - lists

Example:

>>> ExampleList = ["A" , "B" , "C" , "D" , "E"]
>>> ExampleList [0]
’A ’
>>> ExampleList [1]
’B ’
>>> ExampleList [4]
’E ’
>>> ExampleList [−1]
’E ’
>>> ExampleList [−5]
’A ’

Mark Poolman Computational Representation of Metabolic Networks

Compound types - dictionaries

Similar in concept to lists, but items held as key/value pairs, are not ordered, and key
types are not restricted to integer. {"Org" "Temp" "Viable" "Day" "Media"

"Ecoli" 97.20 False 10 "Simple"
{

{
keys

values

dictionary

Mark Poolman Computational Representation of Metabolic Networks

Compound types - dictionaries

Creating a dictionary:

>>> ExampleDict ={ " Org " : " Eco l i " ,
"Temp" :97 .2 ,
" V iab le " : False ,
"Day" :10 ,
" Media " : " Simple "

}
>>> pr in t ExampleDict
{ ’ Media ’ : ’ Simple ’ ,

’ Org ’ : ’ Eco l i ’ ,
’ V iab le ’ : False ,
’Temp ’ : 97 .2 ,
’Day ’ : 10

}

Mark Poolman Computational Representation of Metabolic Networks

Compound types - dictionaries

Changing existing values in a dictionary:

>>> ExampleDict [" Media "] = " Complex "
>>> ExampleDict ["Temp"] = 30
>>> ExampleDict [" V iab le "] = True
>>> pr in t ExampleDict
{ ’ Media ’ : ’ Complex ’ ,

’ Org ’ : ’ Eco l i ’ ,
’ V iab le ’ : True ,
’Temp ’ : 30 ,
’Day ’ : 10
}

Mark Poolman Computational Representation of Metabolic Networks

Compound types - dictionaries

Adding new key/value pairs to a dictionary:

>>> ExampleDict [" Recorded by "] = " Mark "
>>> pr in t ExampleDict
{ ’ Media ’ : ’ Complex ’ ,

’ Org ’ : ’ Eco l i ’ ,
’ V iab le ’ : True ,
’Temp ’ : 30 ,
’ Recorded by ’ : ’ Mark ’ ,
’Day ’ : 10
}

Mark Poolman Computational Representation of Metabolic Networks

Functions in Python

Functions behave in the same way as class methods, although they are not an attribute
of any particular class.

dir() list the attributes of an object.

type() returns the class of an object.

len() returns the length of an object (if that is meaningful)

Mark Poolman Computational Representation of Metabolic Networks

Functions in Python - Examples

>>> L = [1 ,2 ,3 ,4]

>>> di r (L)
[’ __add__ ’ , ’ __class__ ’ , ’ __contains__ ’ , ’ __de la t t r __ ’ , ’ __del i tem__ ’ ,
.
.
’ append ’ , ’ count ’ , ’ extend ’ , ’ index ’ , ’ i n s e r t ’ , ’ pop ’ ,
’ remove ’ , ’ reverse ’ , ’ s o r t ’]

>>> type (L)
<type ’ l i s t ’ >

>>> len (L)
4
>>>

Mark Poolman Computational Representation of Metabolic Networks

Here’s one I made earlier - Modules

Modules are used to store pre-written python code for later re-use. They must be
imported in order to be used:

>>> import math
>>> di r (math)
[. . . ,
’ p i ’ , . . .
’ s q r t ’ . . .]

Modules can then be accessed with dot notation:

>>> pr in t math . p i
3.14159265359
>>> pr in t math . s q r t (2)
1.41421356237

Mark Poolman Computational Representation of Metabolic Networks

Here’s one I made earlier - Modules

Alternatively selection of items can be imported instead:

>>> from math import pi , s in
>>> pr in t s in (p i / 4)
0.707106781187

Mark Poolman Computational Representation of Metabolic Networks

For loops (other loops are available)

We frequently wish to act upon each item in a list in turn. The for loop provides a
convenient way of doing this.

In general:

for I tem in MyList :
do something

Example:

>>> for l e t t e r in ExampleList :
pr in t l e t t e r

C
B
A
E
D

Mark Poolman Computational Representation of Metabolic Networks

For loops (other loops are available)

For loops provide a convenient way of scanning across a range of numbers, using, for
example the built in range function:

>>> for x in range (1 0) :
pr in t x , x∗∗2 , x∗∗3

0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

Mark Poolman Computational Representation of Metabolic Networks

End of Part 1

We have now covered enough fundamentals to
think about how to use it for modelling.

What do we want to represent and act upon ?

Mark Poolman Computational Representation of Metabolic Networks

What is ScrumPy ?

A collection of modules (a package) providing the ability to define and analyse models.

Everything revolves around the use of model objects:

>>> m = ScrumPy . Model (" FileName . spy ")

Where "FileName.spy" is the name of file describing the model.

The " .spy" extension is conventional and convenient, but not mandatory.

and "m" is the model object. In these talks, "m" will always be used to denote the
model.

Mark Poolman Computational Representation of Metabolic Networks

Model Definition

In ScrumPy, a model is defined by one or more text files, defining:

Comments Ignored by ScrumPy, but are useful to the human reader.

Directives Not part of the model per se, but specify how the model is to be read.

Reactions Define the metabolic network.

Initialisations Define parameter values and initial metabolite concentrations (only in
kinetic models)

Mark Poolman Computational Representation of Metabolic Networks

Model Definition

comment , every th ing from
to the end of the l i n e i s ignored

S t r u c t u r a l ()
a D i r e c t i v e . Do not do any k i n e t i c processing .

Rubisco : # a reac t i on name
x_CO2 + RuBP_ch −> 2 PGA_ch # s to i ch iome t r y
~ # d e f a u l t k i n e t i c

PGK:
PGA_ch + ATP_ch <> BPGA_ch + ADP_ch
~

G3Pdh :
BPGA_ch + x_NADPH_ch + x_Proton_ch <>

x_NADP_ch + GAP_ch + Pi_ch
~

Mark Poolman Computational Representation of Metabolic Networks

Model Definition - identifiers

Identifiers = Names

Either:
Any sequence of alphanumeric characters and _ (underscore), not starting with a
number e.g.
Valid:

Fructose6_Phosphate
AlphaAnal ine

Invalid:

2,3−bisphosphoglycerate
TRANS−23−DEHYDROADIPYL−COA

Or:
Any quoted (") sequence of characters.

" Saturated−Fat ty−Acyl−CoA"
"3−oxo−c is−vaccenoyl−ACPs"

Mark Poolman Computational Representation of Metabolic Networks

Analysing models - the Stoichiometry Matrices

Accessed as m.sm (internal) and m.smx (external):

Ru5Pk Aldo2 TPT_DHAP Light_react TKL
RuBP_ch 1/1 0/1 0/1 0/1 0/1
ATP_ch -1/1 0/1 0/1 1/1 0/1
ADP_ch 1/1 0/1 0/1 -1/1 0/1
GAP_ch 0/1 0/1 0/1 0/1 -1/1
Pi_ch 0/1 0/1 1/1 -1/1 0/1
DHAP_ch 0/1 -1/1 -1/1 0/1 0/1
F6P_ch 0/1 0/1 0/1 0/1 -1/1
E4P_ch 0/1 -1/1 0/1 0/1 1/1
X5P_ch 0/1 0/1 0/1 0/1 1/1
SBP_ch 0/1 1/1 0/1 0/1 0/1
Ru5P_ch -1/1 0/1 0/1 0/1 0/1

Mark Poolman Computational Representation of Metabolic Networks

Analysing models - the Stoichiometry Matrices

By default values in the stoichiometry matrices are rational numbers (ie fractions).

They can are represented as (e.g) 1/2 or mpq(1,2).

This can be changed with the ElType() directive (earlier slide).

For large (genome scale) models it is more common to use real numbers
(ElType(float))

Mark Poolman Computational Representation of Metabolic Networks

Analysing models - the Stoichiometry Matrices

Stoichiometry matrices behave as a list of rows:

>>> pr in t m.sm[0]
[mpq(1 , 1) , mpq(0 , 1) , mpq(0 , 1) , mpq(0 , 1) , mpq(0 , 1) , . . .]

Or as a dictionary of rows:

>>> pr in t m.sm["RuBP_ch"]
[mpq(1 , 1) , mpq(0 , 1) , mpq(0 , 1) , mpq(0 , 1) , mpq(0 , 1) , . . .]

Individual elements can be accessed as matrix[row,col]:

>>> pr in t m.sm[0 , 0]
1/1
>>> pr in t m.sm["RuBP_ch" , "Ru5Pk"]
1/1

Mark Poolman Computational Representation of Metabolic Networks

Analysing models - the Stoichiometry Matrices

The null-space is obtained the matrix.NullSpace() method:

>>> k = m.sm. NullSpace ()
>>> pr in t k

c_0 c_1 c_2 c_3 c_4
Ru5Pk 0/1 0/1 0/1 0/1 -3/1
Aldo2 0/1 0/1 0/1 0/1 -1/1
TPT_DHAP 0/1 2/1 1/1 1/1 -1/1
Light_react -1/1 -1/1 0/1 1/1 -9/1
TKL 0/1 0/1 0/1 0/1 -1/1
G3Pdh 0/1 0/1 0/1 1/1 -6/1
PGK 0/1 0/1 0/1 1/1 -6/1
TPI 0/1 1/1 1/1 1/1 -3/1
TKL2 0/1 0/1 0/1 0/1 -1/1...

Mark Poolman Computational Representation of Metabolic Networks

And now

We have covered enough to start the practical.

Mark Poolman Computational Representation of Metabolic Networks

