
Practical: Identification of metabolic

pathways involved in AMR in E.coli

using GSMM

Pareena Verma

September 19, 2024

In this practical, we will investigate the GSM of E.coli. We will inte-

grate the experimental data (as discussed in the presentation) into GSM and

indentify reactions, hence pathways involved in resistance against antibiotics.

Note: DO NOT COPY PASTE THE CODE ANDREMEMBER PYTHON

IS A CASE-SENSITIVE LANGUAGE.

1. Get the model.

cd into your working directory and download the archive containing

the model and extract the files by this command on the terminal :

$ ta r =xvf Pract ica l PV . ta r

2. Open the model.

Start ScrumPy in the folder containing the .spy files and load the top-

level model file Model.spy to create a model object. Note that the

model is created in a modular fashion, and the top-level file will load

the different components of the model.

>>> m = ScrumPy . Model (”Model . spy”)

1

3. Check the model (Beginner)

(a) Examine how the model is created. How many modules are loaded?

Can you tell what each module contains?

(b) How many reactions and metabolites are present?

(c) How many media transporters are present in the model? (Hint:

all media transporters have suffix “ mc tx”.)

(d) How many biomass transporters are present in the model? (Hint:

all biomass transporters have suffix “ bm tx”.)

4. Check the model (Expert)

Check your model for energy and mass conservation. BuildLP is a

module for model curation, which has the functions to check energy

and mass conservation.

(a) Import the module named BuildLP using this command:

>>> import BuildLP

(b) Check for energy consistency by:

>>> BuildLP . ATPaseCheckLP(m)

>>> BuildLP .NADPHCheckLP(m)

>>> BuildLP .NADHCheckLP(m)

You should get the result as “undefined”, which means that model

is not generating energy out of nothing.

(c) Check for biomass formation by:

>>> BuildLP . CheckBiomass (m)

You should get the result as “optimal”, which means that model

is able to form all biomass components.

2

(d) Check number of reactions involved with biomass formation. Read

the documentation about LP here : https://mudshark.brookes.

ac.uk/ScrumPy/Doc/LinProg. Exercise 6 is complementary to

the documentation here but for the purpose of this exercise, gen-

erate lp object as follows because BuildLP generates lp in the

background of biomass formation.

>>> lp = BuildLP . BuildLP (m)

>>> lp . So lve ()

>>> s o l = lp . GetPrimSol ()

>>> len (s o l)

5. Let’s find some drug targets.

(a) Import the module named “Gene2Reac” by using command:

>>> from Analys i s import Gene2Reac

(b) Extract the reactions by:

>>> r e a c s = Gene2Reac . ExtractReacs ()

How many reactions are present?

(c) Extract the metabolic reactions which are present in the model

by:

>>> mode l reacs = Gene2Reac . ModelReacs (m, r ea c s)

Check the difference between number of reacs and model reacs.

Remember from the presentation, not all genes are associated with

metabolism, therefore model reacs will have only the metabolic

reactions present in the model.

(d) Knockout analysis : Now, we will check the impact of knocking

out these reactions one by one in the model by:

3

https://mudshark.brookes.ac.uk/ScrumPy/Doc/LinProg
https://mudshark.brookes.ac.uk/ScrumPy/Doc/LinProg

>>> Gene2Reac . KnockOut (m, mode l reacs)

Check the results and compare with the slides. Notice the reac-

tions with optimal solution and remember from elementary mode

analysis part of the lecture. See next exercise for detailed expla-

nation.

6. Knock out two reactions associated with one gene and find out if the

biomass component is being formed or not.

(a) Generate lp object by:

>>> lp = m.GetLP ()

(b) Set objective as minimisation of total flux by:

>>> lp . Se tObjec t ive (m. sm . cnames)

(c) Set fixed flux for production of 1 unit of LPS, i.e., flux of -1.

>>> lp . SetFixedFlux ({ ‘ lps bm tx ’ :=1})

(d) Knockout the first reaction associated with the gene (refer to solu-

tion from previous problem or slides from the lecture for the name

of reactions and replace ’reac1’ with actual name.)

>>> lp . SetFixedFlux ({ ‘ r eac1 ’ : 0})

(e) Solve the lp. You should get a solution, i.e., optimal.

>>> lp . So lve ()

(f) Knockout the second reaction, in the same manner as first.

Note : This is the in silico knockout of one gene as you are knock-

ing out all reactions associated with that gene.

>>> lp . SetFixedFlux ({ ‘ r eac2 ’ : 0})

4

(g) Solve the lp again. If you don’t get a solution, it means this gene

is essential for production of the biomass component.

>>> lp . So lve ()

5

