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Background – Research Setting

VALUE-ADDED 
CHEMICAL 
PRODUCTS

WASTE GAS
[CO2, H2, CO]

Clostridium 
autoethanogenum

➢ Acetate (C2H4O2)
➢ Ethanol (C2H6O)
➢ Lactate (C3H6O3)
➢ 2,3-Butanediol 

(C4H10O2)



2



Methods:

➢ Pathway Tools

➢ ScrumPy

➢ Humphreys et al. (2015)

Results:

➢ 795 reactions

➢ 786 metabolites

➢ 84 transport reactions
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Construction

Genome Scale Metabolic Model
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ATP maintenance costs

Parametrization

Marcellin et al. (2016): 

● GAM = 41.257

Nagarajan et al. (2014):

● GAM = 46.666

● NGAM = 0.45

Experimental Methods:

➢ Vary dilution rate

➢ CO uptake

➢ Estimate ATP yields

Results:

➢ GAM = 100.0 mmol gDCW-1

➢ NGAM = 2.28 mmol gDCW-1 h-1
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Biomass composition

Parametrization

Biomass Component g/g (%) ±

Protein 26.250 2.278

DNA 14.569 7.532

RNA 17.949 4.202

Lipid 22.002 1.716

Polysaccharide 07.625 0.033

Teichoic acid 10.197 7.833

Others 09.270 –
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Substrate testing

Validation

Methods:

➢ Flux Balance Analysis (FBA)

● Objective: Maximize growth rate

● Constraint: CO as sole carbon and energy source

Results:

➢ Predicted growth rate = 0.026 h-1

➢ Acetate forms sole product

➢ Measured growth rate = 0.027 ± 0.001 h-1

➢ Measured uptake rate = 16.57 ± 0.002 mmol gDCW-1 h-1

Growth Rate Prediction

CO CO2 + H2 Fructose Fumarate Glucose

    
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Product spectrum

Validation

Compound YATP Nett stoichiometry

Acetate 0.344 4 CO + 2 H2O → C2H4O2 + 2 CO2

Ethanol 0.313 6 CO + 3 H2O → C2H6O + 4 CO2

Lactate 0.146 6 CO + 3 H2O → C3H6O3 + 3 CO2

Hydrogen 0.125 CO + H2O → H2 + CO2

2,3-butanediol 0.11 11 CO + 5 H2O → C4H10O2 + 7 CO2

“…the ATP yield for ethanol production from CO is higher than 
for acetate production from CO. And indeed, some acetogens like C. 

autoethanogenum produce ethanol when growing on CO.” 

- Bertsch & Müller (2015)
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Hypothesis testing

CH3COO- + H+

CH3COOH CH3COOH

CH3COO- + H+

➢ C. auto maintains a 
constant transmembrane pH 
gradient, ΔpH ≈ 1

➢ External pH level affects 
dissociation of acetic acid 
(pKa = 4.76)

➢ Restriction on acetate efflux

pH-induced transport restriction

pH-induced efflux restriction of acetic acid favours routes for the 
formation of ethanol.
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Hypothesis testing

Commercial in confidence

carbon limitednon-carbon limited

Gas Shift

Product shift seen with CO uptake rates beyond 𝑣CO
𝜇

.

Non-carbon growth limitation is required for a product shift.

carbon 
limited

non-carbon 
limited
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➢ 2,3-Butanediol (BD) 
production is associated 
with culture crash

➢ Acidification occurs with 
acetate production

➢ Intercellular pH adjusted 
through ‘consumption’ 
of protons

➢
𝑑[𝐻

+
]

𝑑𝑡
< 0

Acid stress response

Proton consumption flux associated with BD production at high 𝑣CO.
Production of BD may become most favourable at non-steady states.

Hypothesis testing: 2,3-Butanediol
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2,3-Butanediol

Elementary Modes Analysis

2. Elementary 
Modes Analysis

Model ~ 800 
reactions

Reactions 52

Transporters 8

Metabolites 55

Elementary 
Modes

75

2,3-BD 
Producers

6

1. Sub-Network 
Extraction (FBA)
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Elementary Modes Analysis

2,3-Butanediol

Mode YATP # reactions

1 0.114 20

2 0.0 25

3 0.0 30

4 0.0 31

5 0.0 31

6 0.0 32

5 elementary modes of 2,3BD production are ATP neutral.

What advantage could be gained from these modes?
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Elementary Modes Analysis

2,3-Butanediol

➢ Cyclic structure coupled to 
expected pathway

➢ Involves central carbon 
metabolism (TCA cycle)

➢ 4 permutations

● Pyr ⇌ Oxa (× 2)

● K’Glu ⇌ Glt (× 2)

➢ Nett conversion represents 
transhydrogenase reaction

The following conversions are available to the network:

NADPH + NAD+ + k ATP         k ADP + k Pi + NADP+ + NADH

Where 𝑘 ∈ [0,1,2]
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Microbial Electrosynthesis 

Kracke et al. (2016)
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Product profile in optimal solutions

Microbial Electrosynthesis 
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NADPH + NAD+ → NADP+ + NADH
ATP → ADP + Pi

NADPH + NAD+ → NADP+ + NADH

i) ii)
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2 ATP → 2 ADP + 2 Pi
NADPH + NAD+ → NADP+ + NADH

iv)

ATP → ADP + Pi
NADPH + NAD+ → NADP+ + NADH

iii)

Thus, the following conversions are available to the network:

NADPH + NAD+ + k ATP         k ADP + k Pi + NADP+ + NADH

Where 𝑘 ∈ [0,1,2]


