

Construction and Analysis of a Genome-Scale Metabolic Model of *Clostridium autoethanogenum*

Rupert Norman

Synthetic Biology Research Centre

18th January 2018

Background – Research Setting

Genome Scale Metabolic Model

Construction

Methods:

- Pathway Tools
- > ScrumPy
- Humphreys *et al*. (2015) Results:
- > 795 reactions
- > 786 metabolites
- 84 transport reactions

Parametrization

ATP maintenance costs

Marcellin et al. (2016):

• GAM = 41.257

Nagarajan et al. (2014):

- GAM = 46.666
- NGAM = 0.45

Experimental Methods:

- Vary dilution rate
- CO uptake
- Estimate ATP yields Results:
- ➤ GAM = 100.0 mmol gDCW⁻¹
- NGAM = 2.28 mmol gDCW⁻¹ h⁻¹

Parametrization

Biomass composition

Biomass Component	g/g (%)	±
Protein	26.250	2.278
DNA	14.569	7.532
RNA	17.949	4.202
Lipid	22.002	1.716
Polysaccharide	07.625	0.033
Teichoic acid	10.197	7.833
Others	09.270	_

Validation

Substrate testing

СО	$CO_2 + H_2$	Fructose	Fumarate	Glucose
\checkmark			\checkmark	×

Growth Rate Prediction

Methods:

- Flux Balance Analysis (FBA)
 - Objective: Maximize growth rate
 - Constraint: CO as sole carbon and energy source

Results:

- > Predicted growth rate = 0.026 h^{-1}
- Acetate forms sole product
- > Measured growth rate = $0.027 \pm 0.001 h^{-1}$
- > Measured uptake rate = 16.57 ± 0.002 mmol gDCW⁻¹ h⁻¹

Validation

Product spectrum

Compound	Y _{ATP}	Nett stoichiometry
Acetate	0.344	$4 \text{ CO} + 2 \text{ H}_2\text{O} \rightarrow \text{C}_2\text{H}_4\text{O}_2 + 2 \text{ CO}_2$
Ethanol	0.313	$6 \text{ CO} + 3 \text{ H}_2\text{O} \rightarrow \text{C}_2\text{H}_6\text{O} + 4 \text{ CO}_2$
Lactate	0.146	$6 \text{ CO} + 3 \text{ H}_2\text{O} \rightarrow \text{C}_3\text{H}_6\text{O}_3 + 3 \text{ CO}_2$
Hydrogen	0.125	$CO + H_2O \rightarrow H_2 + CO_2$
2,3-butanediol	0.11	11 CO + 5 $H_2O \rightarrow C_4H_{10}O_2$ + 7 CO ₂

"...the ATP yield for ethanol production from CO is higher than for acetate production from CO. And indeed, some acetogens like *C. autoethanogenum* produce ethanol when growing on CO."

- Bertsch & Müller (2015)

Hypothesis testing

pH-induced transport restriction

- > C. auto maintains a constant transmembrane pH gradient, $\Delta pH \approx 1$
- External pH level affects dissociation of acetic acid (pK_a = 4.76)

Restriction on acetate efflux

pH-induced efflux restriction of acetic acid favours routes for the formation of ethanol.

Hypothesis testing

Gas Shift

Product shift seen with CO uptake rates beyond $v_{CO.}^{\mu}$ Non-carbon growth limitation is required for a product shift.

Hypothesis testing: 2,3-Butanediol

Acid stress response

University of

- 2,3-Butanediol (BD) production is associated with culture crash
- Acidification occurs with acetate production
- Intercellular pH adjusted through `consumption' of protons

$$\geq \frac{d[H^+]}{dt} < 0$$

Proton consumption flux associated with BD production at high v_{CO} . Production of BD may become most favourable at non-steady states.

2,3-Butanediol

Elementary Modes Analysis

1. Sub-Network Extraction (FBA)

Reactions	52
Transporters	8
Metabolites	55

2. Elementary Modes Analysis

Elementary Modes	75
2,3-BD Producers	6

2,3-Butanediol

Elementary Modes Analysis

Mode	Y _{ATP}	# reactions
1	0.114	20
2	0.0	25
3	0.0	30
4	0.0	31
5	0.0	31
6	0.0	32

5 elementary modes of 2,3BD production are **ATP neutral**. **What advantage could be gained from these modes?**

2,3-Butanediol

Elementary Modes Analysis

- Cyclic structure coupled to expected pathway
- Involves central carbon metabolism (TCA cycle)
- 4 permutations
 - Pyr \rightleftharpoons Oxa (× 2)
 - K'Glu \rightleftharpoons Glt (× 2)
- Nett conversion represents transhydrogenase reaction

The following conversions are available to the network: NADPH + NAD⁺ + kATP \longrightarrow kADP + kPi + NADP⁺ + NADH Where $k \in [0,1,2]$

Microbial Electrosynthesis

Kracke *et al*. (2016)

Microbial Electrosynthesis

Product profile in optimal solutions

Acknowledgements

Supervisors

Charlie Hodgman Thomas Millat Sarah Schatschneider Klaus Winzer Nigel Minton David Fell Mark Poolman Hassan Hartman

Experimentalists

Anne Henstra Louise Sewell Bart Pander Florence Annan Pawel Piatek Ronja Brietkopf Dave Barrett Salah Abdelrazig Laudina Safo

iii)

 $\begin{array}{l} \textbf{ATP} \rightarrow \textbf{ADP + Pi} \\ \textbf{NADPH + NAD^+} \rightarrow \textbf{NADP^+ + NADH} \end{array}$

iv)

2 ATP \rightarrow **2** ADP + 2 Pi NADPH + NAD⁺ \rightarrow NADP⁺ + NADH

Thus, the following conversions are available to the network: NADPH + NAD⁺ + kATP $\longrightarrow k$ ADP + kPi + NADP⁺ + NADH Where $k \in [0,1,2]$