Construction of Genome Scale Models

Mark Poolman

January 17, 2018

Wednesday L7

Mark Poolman Construction of Genome Scale Models

・ 同 ト ・ ヨ ト ・ ヨ ト …

Small Models	Genome-scale Models
Defined	Undefined (1) We don't define the contents.
Defined	Undefined (2) We don't know the contents.
Easy to analsyse	Hard to analyse The tech. won't always scale.
Easy to analyse	Hard to analyse Our understanding won't always scale.

· 글 ▶ · ★ 글 ▶ · · ·

Small Models	Genome-scale Models
Defined	Undefined (1) We don't define the contents.
Defined	Undefined (2) We don't know the contents.
Easy to analsyse	Hard to analyse The tech. won't always scale.
Easy to analyse	Hard to analyse Our understanding won't always scale.

· 글 ▶ · ★ 글 ▶ · · ·

Small Models	Genome-scale Models
Defined	Undefined (1) We don't define the contents.
Defined	Undefined (2) We don't know the contents.
Easy to analsyse	Hard to analyse The tech. won't always scale.
Easy to analyse	Hard to analyse Our understanding won't always scale.

Mark Poolman Construction of Genome Scale Models

ヨトメヨトー

Small Models	Genome-scale Models
Defined	Undefined (1) We don't define the contents.
Defined	Undefined (2) We don't know the contents.
Easy to analsyse	Hard to analyse The tech. won't always scale.
Easy to analyse	Hard to analyse Our understanding won't always scale.

· 글 ▶ · ★ 글 ▶ · · ·

Small Models	Genome-scale Models
Defined	Undefined (1) We don't define the contents.
Defined	Undefined (2) We don't know the contents.
Easy to analsyse	Hard to analyse The tech. won't always scale.
Easy to analyse	Hard to analyse Our understanding won't always scale.

· 글 ▶ · ★ 글 ▶ · · ·

Easy !!

- Choose your favourite organism
- Go to your favourite data base
- Save the reactions in a suitable format
- Job done (\approx 1 minute with a local db)

Unfortunately, NO

→ Ξ → < Ξ →</p>

Easy !!

- Choose your favourite organism
- Go to your favourite data base
- Save the reactions in a suitable format
- Job done (\approx 1 minute with a local db)

Unfortunately, NO

(E) < E)</p>

Easy !!

- Choose your favourite organism
- Go to your favourite data base
- Save the reactions in a suitable format
- Job done (\approx 1 minute with a local db)

Unfortunately, NO

크 > < 크 >

- 1) Mis-annotation:
 - Reactions absent that should be present.
 - Reactions present that should be absent.

Little can be done from the structural modelling perspective.

Primarily a bioinformatics problem .

- 1) Mis-annotation:
 - Reactions absent that should be present.
 - Reactions present that should be absent.

Little can be done from the structural modelling perspective.

Primarily a bioinformatics problem .

2) Non-specific metabolites e.g. :

- Some-tRNA
- "Long-Chain-Fatty-Acids"
- "An alcohol"

ъ

3) Incorrect stoichiometries e.g.

- "3.2.1.58-RXN": NOTHING -> NOTHING
- "3.6.3.4—RXN': "CU+2" + "WATER" + "ATP" -> "CU+2" + "|Pi|" + "ADP"
- "UROPORIIIMETHYLTRANSA—RXN":
- "UROPORPHYRINOGEN—III" + 2 "S—ADENOSYLMETHIONINE"
- —> 2 "ADENOSYL—HOMO—CYS" + "CPD—9038"

3) Incorrect stoichiometries e.g.

- "3.2.1.58-RXN": NOTHING -> NOTHING
- "3.6.3.4-RXN': "CU+2" + "WATER" + "ATP" -> "CU+2" + "|Pi|" + "ADP"
- "UROPORIIIMETHYLTRANSA—RXN":
- "UROPORPHYRINOGEN—III" + 2 "S—ADENOSYLMETHIONINE"
- —> 2 "ADENOSYL—HOMO—CYS" + "CPD—9038"

3) Incorrect stoichiometries e.g.

- "3.2.1.58-RXN": NOTHING -> NOTHING
- "3.6.3.4-RXN": "CU+2" + "WATER" + "ATP" -> "CU+2" + "|Pi|" + "ADP"
- "UROPORIIIMETHYLTRANSA—RXN":
- "UROPORPHYRINOGEN—III" + 2 "S—ADENOSYLMETHIONINE"
- —> 2 "ADENOSYL—HOMO—CYS" + "CPD—9038"

3) Incorrect stoichiometries e.g.

- "3.2.1.58-RXN": NOTHING -> NOTHING
- "3.6.3.4-RXN": "CU+2" + "WATER" + "ATP" -> "CU+2" + "|Pi|" + "ADP"
- "UROPORIIIMETHYLTRANSA-RXN":
- "UROPORPHYRINOGEN—III" + 2 "S—ADENOSYLMETHIONINE"
- -> 2 "ADENOSYL-HOMO-CYS" + "CPD-9038"

Consider:

"RXN-1827":

"1-4-alpha-D-Glucan" + "WATER" ->"ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"

- Is the real stoichiometry ?
- WATER" —> "ALPHA—MALTOSE"
- WATER" -> "ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"
- "1-4-alpha-D-Glucan" +"WATER" -> "ALPHA-MALTOSE"

Note: Only a human can tell which is correct, the computer can't

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Consider:

"RXN-1827":

"1-4-alpha-D-Glucan" + "WATER" ->"ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"

Is the real stoichiometry ?

- WATER" -> "ALPHA-MALTOSE"
- WATER" -> "ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"
- "1-4-alpha-D-Glucan" +"WATER" -> "ALPHA-MALTOSE"

Note: Only a human can tell which is correct, the computer can't

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Consider:

"RXN-1827":

"1-4-alpha-D-Glucan" + "WATER" -> "ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"

- Is the real stoichiometry ?
- WATER" -> "ALPHA-MALTOSE"
- WATER" -> "ALPHA-MALTOSE" + "1-4-alpha-D-Glucan"
- "1-4-alpha-D-Glucan" +"WATER" -> "ALPHA-MALTOSE"

Note: Only a human can tell which is correct, the computer can't

Now consider:

"GLYCOGENSYN-RXN":

"1-4-alpha-D-Glucan" + "ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

Correct stoichiometry is:

"ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

But combining this with the previous reaction results in a net stoichiometry:

"ADP-D-GLUCOSE" -> "ADP" + "ALPHA-MALTOSE"

Creating six carbon atoms from nothing !!

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э.

Now consider:

"GLYCOGENSYN-RXN":

"1-4-alpha-D-Glucan" + "ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

Correct stoichiometry is:

"ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

But combining this with the previous reaction results in a net stoichiometry:

"ADP-D-GLUCOSE" -> "ADP" + "ALPHA-MALTOSE"

Creating six carbon atoms from nothing !!

Now consider:

GLYCOGENSYN-RXN":

"1-4-alpha-D-Glucan" + "ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

Correct stoichiometry is:

"ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

But combining this with the previous reaction results in a net stoichiometry:

"ADP-D-GLUCOSE" -> "ADP" + "ALPHA-MALTOSE"

Creating six carbon atoms from nothing !!

Now consider:

GLYCOGENSYN-RXN":

"1-4-alpha-D-Glucan" + "ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

Correct stoichiometry is:

"ADP-D-GLUCOSE" -> "ADP" + "1-4-alpha-D-Glucan"

But combining this with the previous reaction results in a net stoichiometry:

"ADP-D-GLUCOSE" -> "ADP" + "ALPHA-MALTOSE"

Creating six carbon atoms from nothing !!

GLYCOGENSYN-RXN": "ADP-D-GLUCOSE" -> "ADP" +"1-4-alpha-D-Glucan"

"RXN-1827": "1-4-alpha-D-Glucan" -> 1/2 "ALPHA-MALTOSE"

Problem is harder for heteropolymers

ヘロン 人間 とくほ とくほ とう

"RXN-1827": "1-4-alpha-D-Glucan" -> 1/2 "ALPHA-MALTOSE"

Problem is harder for heteropolymers

ヘロン 人間 とくほ とくほ とう

- GLYCOGENSYN-RXN": "ADP-D-GLUCOSE" -> "ADP" +"1-4-alpha-D-Glucan"
- "RXN-1827": "1-4-alpha-D-Glucan" -> 1/2 "ALPHA-MALTOSE"

Problem is harder for heteropolymers

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

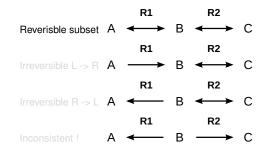
- GLYCOGENSYN-RXN": "ADP-D-GLUCOSE" -> "ADP" +"1-4-alpha-D-Glucan"
- "RXN-1827": "1-4-alpha-D-Glucan" -> 1/2 "ALPHA-MALTOSE"

Problem is harder for heteropolymers

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Clearly:

Cannot both be true. (Violation of mass conservation)

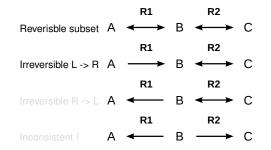

(雪) (ヨ) (ヨ)

ъ

Even without empirical formulae such sets of reactions can be identified by a combination of:

- Analysis of left null-space
- Linear programming
- Provides an automatic method for identification of the polymer problem.
- See: Gevorgyan et al 2008, Bioinformatics

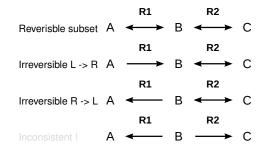
Inconsistent subsets:



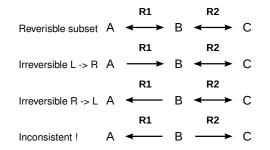
Identify from null-space in conjunction with a knowledge of reaction (ir)reversibilities.

A E > A E >

< 🗇 🕨


Inconsistent subsets:

Identify from null-space in conjunction with a knowledge of reaction (ir)reversibilities.


A E > A E >

Inconsistent subsets:

Identify from null-space in conjunction with a knowledge of reaction (ir)reversibilities.

Inconsistent subsets:

Identify from null-space in conjunction with a knowledge of reaction (ir)reversibilities.

A E > A E >

Violations of conservation of energy:

- Identify from LP:
 - Constrain all transporters to zero flux.
 - 2 Set a demand for ATP and/or NAD(P)H.
 - If the LP has a viable solution an inconsistency exists.
 - All reactions in the solution must now be examined.

Constructing GSMs from a database is easy.

Constructing meaningful GSMs from databases is hard.

Requires rigorous and methodical QC

프 > - 프 > · ·

Technicalities - Modularised models

Components:

- From the DB
- Defined transporters.
- Additional reactions of interest.

ScrumPy provides the Include() directive to accomplish this:

```
External ("PROTON", "WATER")
```

```
Include (AutoGeobac.spy,
Transporters.spy,
Biomass.spy,
ExtraReacs.spy,
ETC_core.spy)
```

프 에 에 프 어 - -

Be consistent !

- Only use quoted identifiers for items in the DB
- Use "_tx" suffix to denote a transporter.
- Name transporters according to what they transport.
- Use _bm_tx suffix to denote biomass export.

A E > A E >

Be consistent !

• Positive flux *always* denotes gain.

• Negative flux *always* denotes loss.

A E > A E >

э