

UNITED KINGDOM · CHINA · MALAYSIA

Elementary modes analysis for 3-hydroxypropanoic acid production in *Cupriavidus necator*

Lithoautotrophic metabolism of *Cupriavidus necator*

- Carbon dioxide is fixed via the Calvin cycle
- Membrane bound hydrogenase directly connected to the electron transport chain (ETC) for generating ATP
- Soluble hydrogenase that is coupled to NADH synthesis that is required for the Calvin cycle or ETC
- Oxygen final electron acceptor (under anaerobic conditions nitrate is used)

Structural model of *Cupriavidus necator* for 3HP production

- 1. Calvin cycle (13)
- 2. Electron transport chain (6)
- 3. PHB production (3)
- 4. 3HP production (34)
- 5. Transporters (10)

Elementary modes analysis for increasing 3HP production

Computed elementary modes of the small model for:

- Calculating 3HP yields and energy requirements of the different solutions.
- Identify target knockouts for redirecting flux towards the optimal route for 3HP using minimal cut set analysis.

Calculating maximum 3HP yield and energy requirements of EMs

Pathway	Number of Modes	Theoretical max. yield (mol/mol CO₂)	O ₂ requirements (mol/mol CO ₂)	H ₂ requirements (mol/mol CO ₂)
РНВ	614	0.25	[0.86, 9.63]	[6.17, 7.33]
ЗНР	9708	0.33	[0.58, 7.67]	[4.0, 4.44]
3HP + PHB	151	0.20 + 0.10	[0.93, 1.8]	[4.09, 4.55]

Net stoichiometry example:

 $3.0 \text{ CO}_2 + 12.0 \text{ H}_2 + 3.0 \text{ O}_2 \rightarrow 1.0 \text{ 3HP} + 1.0 \text{ H}_2\text{O}$

Higher oxygen and hydrogen requirements correspond to higher energy requirements of pathway.

Identifying target knockouts for increasing 3HP production

Minimal Cut Sets

A minimal set of reactions whose **deletion** results in **failure** of certain **network functions**.

- Searched for reactions whose deletion
 blocks PHB production.
- Found only 3 possible target knock outs.
- The reaction r37 would be the primary target to avoid the accumulation of unwanted intermediates and locking up CoA in a dead-end.

UNITED KINGDOM · CHINA · MALAYSIA

Identifying target knockouts for increasing 3HP production

Minimal Cut Sets

A minimal set of reactions whose **deletion** results in **failure** of certain **network functions**.

- Searched for reactions that removed nonoptimal 3HP-producing EMs.
- Identified 10 optimal modes in terms of energy requirements, and number of non-native reactions.

 3-combinations r24, r28, r33 and r24, r29, r33 removed a 9593 of the 9849 nonoptimal modes.

UNITED KINGDOM · CHINA · MALAYSIA

Summary

- Using the net stoichiometry of each elementary mode we can calculate the theoretical yield and energy requirements, which are useful for assessing different pathways for producing a target chemical.
- **Minimal cut-set analysis** identifies a minimal set of reactions that **prevents** the network from carrying out a function (e.g. PHB production) to ensure only the desirable solutions (e.g. 3HP producing solutions) are feasible.
- Since we are only using a small model of metabolism, any results should be tested in a **genome scale model** for validation.