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• Channelling Metabolism into Desired Routes
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aa Annual producn. Use

tons

glu 1,500,000 (2001) flavouring

lys 300,000 (1996) animal feed

thr 1000 animal feed

met 10,000 animal feed

ile 400 infusion solutions

dietary products

val ditto

leu ditto

phe 12,000 (1997) aspartame sweetener

trp 600 (1997) animal feed

his pharmaceutical

tyr 150 (1997) pharmaceutical
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1. Corynebacterium glutamicum. Isolated as glu producer by

Kinoshita et al, 1957. Corynebacteria are rod-shaped Gram +ve,

not usually motile, generally aerobic, oxidising a wide range of

organics. Many are soil organisms, some animal parasites (C.

diptheriae). Principal organism (inc. ssp. flavum and

lactofermentum for: glu, lys.

2. E. coli. Main advantage is well–studied, with good genetic

manipulation systems. But amino acid metabolism has more

complex regulation, and forms acetate even in aerobic

conditions. Organism for thr and aromatic aas.



Lysine Production
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• Not produced by wild–type C. glutamicum. Producer isolated by mutagenesis and

selection for resistance to inhibitory analogues (e.g. S-2-aminoethyl-L-cysteine).

• Some strains possess feedback–resistant aspartate kinase.

• C. glutamicum has an inducible, energy–dependent lysine exporter (Kramer &

Broer, 1991).
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Approaches to calculating this have included:

• Input–output stoichiometry

• Pathway tracing and accounting

• Structural analysis of the network, by elementary modes analysis

and/or linear programming
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If we assume that glucose, oxygen and ammonia are available to

make lysine, and water and CO2 can be products, then a possible

equation of lysine synthesis is:

-a.C6H12O6 - b.O2 - c.NH3 + C6H14N2O2 + d.CO2 + e.H2O = 0

The values of a—e must produce a net zero for each of the elements

in the equation.

For example, balancing N requires:

−c+ 2 = 0

The H balance leads to:

a =
e+ 4

6
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The C balance gives d in terms of a.

Substituting a, c and d in the O balance leads to:

b = e− 3

Assuming b cannot be negative, i.e. no oxygen evolution, then

e ≥ 3.

The largest theoretical molar yield of lysine per glucose is then 1

a
:

1

a
=

6

e+ 4
=

6

7
= 86%

But can this be implemented in the C. glutamicum metabolic

network?

Example from “Metabolic Engineering”, Nielsen et al.
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• Elementary modes analysis or Linear Programming (Flux

Balance Analysis) show a variety of possible molar yields from

60%, to 75% to 86%.

• The highest value is only achievable if there is a

transhydrogenase to exchange NADH for NADPH, and this is not

thought to be present in C. glutamicum.

• In the absence of transhydrogenase, the yield of 75% requires

that no PEP is lost as pyruvate through the pyruvate kinase

reaction, and in fact excess pyruvate (formed in the PTS system

of glucose uptake) is used by pyruvate carboxylase or PEP

synthase that would need to be added to the native metabolic

network.
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Polyhydroxybutyrate or polyhydroxyalkanoates



Polyhydroxybutyrate Synthesis in Yeast
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Based on highest–yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH → PHB + 2 CO2 0.67

2. 65 Ac. + 31 EtOH → 30 PHB + 72 CO2 0.63

(Number following each mode is the fractional carbon conversion.)
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Based on highest–yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH → PHB + 2 CO2 0.67

2. 65 Ac. + 31 EtOH → 30 PHB + 72 CO2 0.63

Wild-type yeast + ATP–citrate lyase + PHB pathway

3. 12 EtOH → 5 PHB + 4 CO2 0.83

4. 77 EtOH + 31 Glycerol →

48 PHB + 4 Ac. + 47 CO2 0.78

(Number following each mode is the fractional carbon conversion.)



Channelling Metabolism into

Desired Routes

Outline

Maximal Yields of

Biotechnological

Processes

Pathway Design for

Improved Yield

Channelling Metabolism

into Desired Routes

• Ethanol from Plant

Waste

• A Demonstration

Solution

• The Model

• The Analysis

Redirecting Metabolism

into a Synthetic

Pathway

Conclusion

C1net Wshop 4,Jan 2018, L4: – 15 / 22



Ethanol from Plant Waste

Outline

Maximal Yields of

Biotechnological

Processes

Pathway Design for

Improved Yield

Channelling Metabolism

into Desired Routes

• Ethanol from Plant

Waste

• A Demonstration

Solution

• The Model

• The Analysis

Redirecting Metabolism

into a Synthetic

Pathway

Conclusion

C1net Wshop 4,Jan 2018, L4: – 16 / 22

Some of the issues:

• Plant wastes (e.g. straw) contain cellulose and hemicellulose

which can be hydrolysed to glucose and pentose sugars.

• Yeasts convert glucose to ethanol, but don’t readily use the

pentoses.

• Escherischia coli can use pentoses as well as glucose, but

ethanol is not its preferred product.

• E. coli is easy to engineer, but can it be modified to make ethanol

from pentoses in such a way that it cannot mutate back to its

original state?
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• Friedrich Srienc’s group (Trinh et al, Appl. Env. Microbiol, 74,

3634-3643, 2008)built a medium-sized structural model of E coli

central carbon metabolism.

• They computed the elementary modes leading from glucose and

pentoses to products including ethanol and biomass.

• They searched for reactions that were needed for modes leading

to other products but which were not needed for some of the

routes to biomass and ethanol.

• They found a set of eight reactions that between them disabled

all the modes except those leading to either ethanol alone or

biomass and ethanol.

• They made a the deletion mutants and obtained close to the

theoretically-predicted yields of ethanol.
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Nicole’s slides
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• Don’t overlook the value of an atomically-balanced stoichiometric

equation for an overall metabolic process, though it only works if

you already know the identities — and elemental composition —

of the inputs and outputs involved.

• Elementary modes analysis can be used to design metabolic

network modifications to obtain improved yields.

• Strategies can include both addition of heterologous enzymes to

provide new routes, or deletion of native enzymes to block

unproductive routes.
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