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aa Annual producn. Use
tons

glu 1,500,000 (2001) flavouring

lys 300,000 (1996) animal feed

thr 1000 animal feed

met 10,000 animal feed

ile 400 infusion solutions
dietary products

val ditto

leu ditto

phe 12,000 (1997) aspartame sweetener

trpo 600 (1997) animal feed

his pharmaceutical

tyr 150 (1997) pharmaceutical
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1. Corynebacterium glutamicum. |solated as glu producer by
Kinoshita et al, 1957. Corynebacteria are rod-shaped Gram +ve,
not usually motile, generally aerobic, oxidising a wide range of
organics. Many are soil organisms, some animal parasites (C.
diptheriae). Principal organism (inc. ssp. flavum and
lactofermentum for: glu, lys.

2. E. coli. Main advantage is well-studied, with good genetic
manipulation systems. But amino acid metabolism has more
complex regulation, and forms acetate even in aerobic
conditions. Organism for thr and aromatic aas.
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Lysine Production
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e Not produced by wild—type C. glutamicum. Producer isolated by mutagenesis and
selection for resistance to inhibitory analogues (e.g. S-2-aminoethyl-L-cysteine).

e Some strains possess feedback—resistant aspartate kinase.

e (. glutamicum has an inducible, energy—dependent lysine exporter (Kramer &

Broer, 1991).
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Input—output stoichiometry

Pathway tracing and accounting

Structural analysis of the network, by elementary modes analysis

and/or linear programming
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If we assume that glucose, oxygen and ammonia are available to
make lysine, and water and CO2 can be products, then a possible
equation of lysine synthesis is:

-4.CgH120¢ - .09 - ¢.NH3 + CgH14N2O9 + d.CO9 + e.HoO =0

The values of a—e must produce a net zero for each of the elements

in the equation.

For example, balancing N requires:

The H balance leads to:

—c+2=0

e+ 4
6

a —
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The C balance gives d in terms of a.

Substituting a, ¢ and d in the O balance leads to:
b=e—3

Assuming b cannot be negative, i.e. no oxygen evolution, then
e > 3.

The largest theoretical molar yield of lysine per glucose is then %:
1 6 6
— = = — = 86%
a e+4 7 ’

But can this be implemented in the C. glutamicum metabolic
network?

Example from “Metabolic Engineering”, Nielsen et al.
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e Elementary modes analysis or Linear Programming (Flux
Balance Analysis) show a variety of possible molar yields from

60%, to 75% to 86%.

e The highest value is only achievable if there is a
transhydrogenase to exchange NADH for NADPH, and this is not
thought to be present in C. glutamicum.

e Inthe absence of transhydrogenase, the yield of 75% requires
that no PEP is lost as pyruvate through the pyruvate kinase
reaction, and in fact excess pyruvate (formed in the PTS system
of glucose uptake) is used by pyruvate carboxylase or PEP
synthase that would need to be added to the native metabolic

network.
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Polyhydroxybutyrate or polyhydroxyalkanoates

Cosmetics Packaging
100% Bioplasti

Cosmetics Packaging
Glass + 100% Bioplasfic

Jewellery/Watches Packaging
100% Bicplastic

Butftons and Speools

4 100% Bioplostic

| Bioplastics 1
* for buttans

Historical Bioplastics 2

| “Galaith” for Jewels
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Polyhydroxybutyrate Synthesis in Yeast
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Based on highest—yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH — PHB + 2 CO» 0.67
2. 65Ac. +31 EtOH — 30PHB + 72 CO, 0.63

(Number following each mode is the fractional carbon conversion.)
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Based on highest—yielding elementary modes of the network:

Wild-type yeast + PHB pathway

1. 2 Acetate + EtOH — PHB + 2 CO» 0.67
2. 65Ac. +31 EtOH — 30PHB + 72 CO, 0.63

Wild-type yeast + ATP—citrate lyase + PHB pathway

3. 12EtOH —-5PHB +4 CO, 0.83
4. 77 EtOH + 31 Glycerol —
48 PHB + 4 Ac. + 47 CO» 0.78

(Number following each mode is the fractional carbon conversion.)
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Some of the issues:

Plant wastes (e.g. straw) contain cellulose and hemicellulose
which can be hydrolysed to glucose and pentose sugars.
Yeasts convert glucose to ethanol, but don’t readily use the

pentoses.

Escherischia coli can use pentoses as well as glucose, but

ethanol is not its preferred product.

E. coli is easy to engineer, but can it be modified to make ethanol
from pentoses in such a way that it cannot mutate back to its

original state?
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e Friedrich Srienc’s group (Trinh et al, Appl. Env. Microbiol, 74,
3634-3643, 2008)built a medium-sized structural model of E coli
central carbon metabolism.

e They computed the elementary modes leading from glucose and
pentoses to products including ethanol and biomass.

e They searched for reactions that were needed for modes leading
to other products but which were not needed for some of the
routes to biomass and ethanol.

e They found a set of eight reactions that between them disabled
all the modes except those leading to either ethanol alone or
biomass and ethanol.

e They made a the deletion mutants and obtained close to the
theoretically-predicted yields of ethanol.
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e Conclusion

e Don't overlook the value of an atomically-balanced stoichiometric
equation for an overall metabolic process, though it only works if
you already know the identities — and elemental composition —

of the inputs and outputs involved.

e Elementary modes analysis can be used to design metabolic
network modifications to obtain improved yields.

e Strategies can include both addition of heterologous enzymes to
provide new routes, or deletion of native enzymes to block

unproductive routes.
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