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“Within a decade or two, it may be possible to screen kids almost

before conception for an enormous range of attributes, such as how

tall they’re likely to be, what body type they will have, their hair and

eye color, what sorts of illnesses they will be naturally resistant to,

and even, conceivably, their IQ and personality type.” Michael D. Lemonick, Time

Magazine 11 Jan 1999.
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Still some weak argumentation, e.g. :

https://en.wikipedia.org/wiki/Designer_baby

A more reasoned contribution from Jan 2017:

https://www.theguardian.com/science/2017/jan/08/design

Leaving aside the technical issues, there is the question of whether

we can infer complex phenotypes from a genome sequence.

https://en.wikipedia.org/wiki/Designer_baby
 https://www.theguardian.com/science/2017/jan/08/designer-babies-ethical-horror -waiting-to-happen
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It came first!

• Metabolism is essential: it is a fundamental process of all living

organisms, encompassing all the chemical conversions that

convert nutrients into new cellular materials and provide energy

for other processes such as movement.

• Metabolism can be useful: bread, alcoholic drinks, cheese,

yoghurt, monosodium glutamate, biofuels.

• Metabolism can go wrong: single gene metabolic diseases;

obesity, diabetes, heart disease, even cancer, are multi-factorial

diseases with a metabolic component.

• We understand how the genes encode metabolism. But how do

we exploit that understanding to predict metabolic responses?

• Biotechnological applications: for designing metabolic

engineering and synthetic biology strategies.

• Another: design of effective drug therapies.

• Other cell processes yield to similar approaches: signal

transduction; cell cycle; apoptosis.
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Targets for biological production of “platform chemicals” (green chemistry):

Chemical Derivatives Chemical Derivatives

Succinate 1,4 butanediol Isoprene Synthetic rubber

3-OH propionate Acrylate Farnesene

Itaconic acid Methylmethacrylate Glycerol Propylene glycol

Ethanol ethylene, biofuel Sorbitol

Lactate Polylactic acid Xylitol

Biohydrocarbons Biofuel Furfural

Choi et al, Metabolic Engineering, 28, 223–239 (2015)

Raw materials include: lignocellulosic biomass, starch, syngas and flue gases

(CO2/CO/H2 mixtures), methane, CO2 and light in algae.
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• Can matter flow from inputs to the desired product?

• What is the maximum conversion efficiency obtainable?

• Can the host cell cope with the energy and redox demands of

production?

• How can losses to unwanted by–products be avoided?

• How can the rate of production be accelerated?
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• Structural — needs reaction list; gives existence and number of

routes; optimal stoichiometries; network flux values.

• Dynamic or Kinetic — needs full kinetic description of each

enzyme/step; predicts time–courses, steady–states, sensitivity

analysis or control distribution . . . Can be deterministic or

stochastic.

• Sensitivity analysis / Control analysis / S–systems — needs

effective kinetics near steady–state; predicts control distribution,

response of steady state to perturbations.
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• Not primarily prediction.
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• Not primarily prediction.

• Testing conceptual understanding and extant knowledge in a

formal, mathematical framework.
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• Not primarily prediction.

• Testing conceptual understanding and extant knowledge in a

formal, mathematical framework.

• Integration of different types of data and observations in a single

framework.



Aims of Modelling

Preamble

• Designer Babies

• 19 Years Later . . .

• Simulated Life

• Virtual Biochemistry

• Why Model

Metabolism?

• Industrial

Biotechnology and

Synthetic Biology

• Design Issues in

Synthetic Metabolism

• The Metabolic

Network

• Genes and

Metabolism

• Genotype to

Metabolic Phenotype

• Summary of Types of

Metabolic Model

• Aims of Modelling

• Outline of the Week

Model Formulation

Formal Representation -

Structure

Summary

C1net Wshop 4, 2018, L1: – 13 / 38

• Not primarily prediction.

• Testing conceptual understanding and extant knowledge in a
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• Generating hypotheses for testing.
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• Not primarily prediction.

• Testing conceptual understanding and extant knowledge in a

formal, mathematical framework.

• Integration of different types of data and observations in a single

framework.

• Generating hypotheses for testing.

• Designing experiments in silico.
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• Not primarily prediction.

• Testing conceptual understanding and extant knowledge in a

formal, mathematical framework.

• Integration of different types of data and observations in a single

framework.

• Generating hypotheses for testing.

• Designing experiments in silico.

• Models are simplifications, and have to be designed for the

specific aims.
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• Today. Theory: Introduction and mathematical representation of

metabolism. Practical: Installing ScrumPy and using Python

• Tuesday. Theory: the main conceptual tools for structural

modelling of metabolism and their application:

◦ Null space analysis and enzyme subsets

◦ Elementary modes

Practical: introduction to modelling with ScrumPy

• Wednesday. Theory: Linear programming (aka Flux Balance

Analysis); building genome scale metabolic models. Practical:

more model analysis with ScrumPy; constructing a model from

databases; Free half–afternoon; Conference dinner

• Thursday. Theory: applications of genome-scale modelling.

Practical: FBA with ScrumPy;

• Friday. Practical: FBA of a genome scale model. Final questions

and answers.
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From Expasy Biochemical Pathways: http://www.expasy.ch/cgi-bin/search-biochem-index

http://www.expasy.ch/cgi-bin/search-biochem-index
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From Expasy Biochemical Pathways: http://www.expasy.ch/cgi-bin/search-biochem-index

http://www.expasy.ch/cgi-bin/search-biochem-index
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From Nelson & Cox, Lehninbger’s Biochemistry, 4th ed.
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v =
SV

S +Km

or v = f(S)

The Km and V have arbitarily been set to 1, where V is the limiting rate (or maximum velocity, Vm) and Km is the

Michaelis constant.
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vnet =
(Vf/Km,S) (S − P/Keq)

1 + S/Km,S + P/Km,P

or v = f(S, P )

Simultaneous dependence of enzyme rate on both substrate and product. The parameters have been set to: Km,S =1;

Vm,f = 10; Km,P = 2, and Keq = 4.
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In a metabolic network there is a flow of matter from the source to the

sink. At steady state, the concentrations of the intermediates remain

constant because their rates of formation exactly equal their rates of

degradation. The flow through the pathway also remains constant.

If there are very slow changes in the concentrations of metabolites,

or the pathway flux, because of slow changes in the source or sink,

the pathway may be regarded as being in quasi steady state

provided the time scale of the changes is very much longer than the

time taken by the pathway to approach steady state.
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Consider a simple metabolic network, e.g.:
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Consider a simple metabolic network, e.g.:

r1: X0 -> S1 ∼

r2: S1 -> S2 ∼

r3: S2 -> S1 ∼

r4: S2 -> X1 ∼

r5: S2 <> S3 ∼
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Consider a simple metabolic network, e.g.:

r1: X0 -> S1 ∼

r2: S1 -> S2 ∼

r3: S2 -> S1 ∼

r4: S2 -> X1 ∼

r5: S2 <> S3 ∼

S1

S2

S3

r1 r2 r3 r4 r5
1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1
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By inspection of the diagram:

dS1

dt
= v1 − v2 + v3

dS2

dt
= v2 − v3 − v4 − v5

dS3

dt
= v5

How can we generalize this?
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The rate at which the substrate concentrations are changing is given

by N.v, where N is the stoichiometry matrix, and v is a vector of

enzyme kinetic functions. So for our substrate cycle network:







dS1

dt
dS2

dt
dS3

dt






=







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5
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The rate at which the substrate concentrations are changing is given

by N.v, where N is the stoichiometry matrix, and v is a vector of

enzyme kinetic functions. So for our substrate cycle network:







dS1

dt
dS2

dt
dS3

dt






=







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















where each vi is the rate function for enzyme i, depending on the

variable metabolites and the parameters Vm,i, Km,i etc, as fi(S).
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The rate at which the substrate concentrations are changing is given

by N.v, where N is the stoichiometry matrix, and v is a vector of

enzyme kinetic functions. So for our substrate cycle network:







dS1

dt
dS2

dt
dS3

dt






=







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















where each vi is the rate function for enzyme i, depending on the

variable metabolites and the parameters Vm,i, Km,i etc, as fi(S).

Integrating this set of non–linear differential equations gives a

dynamic model of our network.
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The rate at which the substrate concentrations are changing is given

by N.v, where N is the stoichiometry matrix, and v is a vector of

enzyme kinetic functions. So for our substrate cycle network:







dS1

dt
dS2

dt
dS3

dt






=







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















where each vi is the rate function for enzyme i, depending on the

variable metabolites and the parameters Vm,i, Km,i etc, as fi(S).

Integrating this set of non–linear differential equations gives a

dynamic model of our network.

The steady state is a set of non–linear simultaneous equations that

can be solved for the steady state values of S.
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Any metabolic network at steady state satisfies the relationship

N.v = 0, where N is the stoichiometry matrix, exemplified by our

model network:

S1

S2

S3







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















=







0
0
0
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Any metabolic network at steady state satisfies the relationship

N.v = 0, where N is the stoichiometry matrix, exemplified by our

model network:

S1

S2

S3







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















=







0
0
0







Structural modelling involves exploring the solutions of this equation,

regarding the vi as the unknown variables.
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Any metabolic network at steady state satisfies the relationship

N.v = 0, where N is the stoichiometry matrix, exemplified by our

model network:

S1

S2

S3







1 −1 1 0 0
0 1 −1 −1 −1
0 0 0 0 1






·















v1
v2
v3
v4
v5















=







0
0
0







Structural modelling involves exploring the solutions of this equation,

regarding the vi as the unknown variables.

The equation is linear, but under–determined. Though solutions are

not unique, they distinguish between feasible and non–feasible

states of the network.
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Any observed set of velocities at steady state will be a linear

combination of a set of vectors K referred to as a basis for the null

space of the stoichiometry matrix. In this case:

K =















1 0
1 1
0 1
1 0
0 0
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Any observed set of velocities at steady state will be a linear

combination of a set of vectors K referred to as a basis for the null

space of the stoichiometry matrix. In this case:

K =















1 0
1 1
0 1
1 0
0 0















The null space can be computed from the stoichiometry matrix using

standard algorithms.
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[1 1 0 1 0]T and [0 1 1 0 0]T
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Any feasible set of velocities at steady state is a linear combination

of these null space vectors, e.g.:

K =















1 0
1 1
0 1
1 0
0 0















← subset

← subset

← dead
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Any feasible set of velocities at steady state is a linear combination

of these null space vectors, e.g.:

K =















1 0
1 1
0 1
1 0
0 0















← subset

← subset

← dead

and:














1 0
1 1
0 1
1 0
0 0















·

[

a
b

]

=















a
a+ b
b
a
0















=















v1
v2
v3
v4
v5
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Any feasible set of velocities at steady state is a linear combination

of these null space vectors, e.g.:
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Reaction subsets are also known, less exactly, as enzyme

subsets.

• The reactions of a subset always carry flux in fixed proportions to

one another at steady state.
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Reaction subsets are also known, less exactly, as enzyme

subsets.

• The reactions of a subset always carry flux in fixed proportions to

one another at steady state.

• Inactivating one reaction of a subset prevents any steady state

flux through any of the other reactions of the subset.
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Reaction subsets are also known, less exactly, as enzyme

subsets.

• The reactions of a subset always carry flux in fixed proportions to

one another at steady state.

• Inactivating one reaction of a subset prevents any steady state

flux through any of the other reactions of the subset.

• Conversely, an increase in flux through any reaction of a subset

has to be accompanied by a proportional increase in flux through

the other members of the subset.
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Reaction subsets are also known, less exactly, as enzyme

subsets.

• The reactions of a subset always carry flux in fixed proportions to

one another at steady state.

• Inactivating one reaction of a subset prevents any steady state

flux through any of the other reactions of the subset.

• Conversely, an increase in flux through any reaction of a subset

has to be accompanied by a proportional increase in flux through

the other members of the subset.

• A reaction subset therefore has a fixed overall reaction

stoichiometry and the subset can be replaced in structural

modelling by a single overall reaction. In this sense, a subset is a

metabolic module.
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Reaction subsets are also known, less exactly, as enzyme

subsets.

• The reactions of a subset always carry flux in fixed proportions to

one another at steady state.

• Inactivating one reaction of a subset prevents any steady state

flux through any of the other reactions of the subset.

• Conversely, an increase in flux through any reaction of a subset

has to be accompanied by a proportional increase in flux through

the other members of the subset.

• A reaction subset therefore has a fixed overall reaction

stoichiometry and the subset can be replaced in structural

modelling by a single overall reaction. In this sense, a subset is a

metabolic module.

• Subsets can be identified from the null space, which can be

rapidly calculated even for a genome–scale metabolic model.
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• Knowledge is more complete for network structure than for

enzyme kinetics.

• Structural analysis involves simple linear equations; dynamic

analysis involves non–linear enzyme kinetic functions.

• The network structure places limitations that constrain the

network dynamics, irrespective of the kinetics, e.g.:

◦ Whether viable routes exist from nutrients to stated metabolic

products;

◦ Whether some routes remain after deletion (knock–out

mutation) of the steps catalysed by a particular enzyme;

◦ What the maximum obtainable conversion yield is for

formation of any metabolite from a given set of sources, and

• Structural models underlie kinetic models, and other techniques

such as Metabolic Flux Analysis and Metabolic Control Analysis.
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• Null space vectors Fell, Palsson et al

• Computer construction of transformation routes Serriotsis &

Bailey; Mavrovouniotis et al

• Graph analysis techniques various

• Elementary modes Schuster et al

• Convex basis / Extreme pathways Palsson et al

• Reaction (enzyme) subsets

• Linear programming - single optimal route Small & Fell, Palsson

et al. Became Flux Balance Analysis and gave rise to

genome–scale metabolic modelling.
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• Mathematical representation of a metabolic network allows us to

separate the network structure and the kinetics.



Summary

Preamble

Model Formulation

Formal Representation -

Structure

Summary

• Summary

C1net Wshop 4, 2018, L1: – 38 / 38

• Mathematical representation of a metabolic network allows us to

separate the network structure and the kinetics.

• Network structure places constraints on the feasible behaviour of

a network at steady state.
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separate the network structure and the kinetics.

• Network structure places constraints on the feasible behaviour of

a network at steady state.

• These constraints underlie kinetic models of metabolism.
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• Mathematical representation of a metabolic network allows us to

separate the network structure and the kinetics.

• Network structure places constraints on the feasible behaviour of

a network at steady state.

• These constraints underlie kinetic models of metabolism.

• Structural modelling investigates the implications of these

network constraints.
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