

PhD project: Construction and Analysis of a Genome Scale Metabolic Model of Clostridium autoethanogenum

Rupert Norman Sarah Schatschneider Thomas Millat Charlie Hodgman Synthetic Biology Research Centre

14/11/2016

- Spore forming
- Grows using CO as sole source of energy and carbon
- Products include: Acetate, ethanol, lactate, 2,3-butanediol & CO₂

Genome Scale Model

Construction

Methods:

- Pathway Tools
- ScrumPy
- Humphreys *et al*. (2015)

Results:

- 795 reactions
- 786 metabolites

Acknowledgements: David Fell, Mark Poolman, Hassan Hartman

Genome Scale Model

Gene-Protein-Reaction Relationships

Inference based on genomic information:

- Operon
- Annotated as subunit/isomer

(~500/795 inferred GPRs)

Genome Scale Model

Switching databases

Initial construction based on BioCyc genome annotation for *C. autoethanogenum*.

Switch to database generated from GASCHEM annotation (Humphreys *et al.*, 2015):

- Reactions common to both databases unchanged
- Reactions unique to CAETHG tested for essentiality
- Reactions unique to CLAU added

Parametrization

ATP maintenance costs

Methods:

- Vary dilution rate
- CO uptake
- Estimate ATP yields

Results:GAM = $108.9 \text{ mmol gDCW}^{-1}$ NGAM = $2.28 \text{ mmol gDCW}^{-1} \text{ h}^{-1}$ (gDCW/L)/OD = 0.340 ± 0.015

Acknowledgements: Anne Henstra, Louise Sewell

Validation

Product Spectrum

Methods:

- Elementary Flux Modes Analysis
- ATP yields (Y_{ATP}): v_{ATPase}/v_{CO}

Results:

- Valid net stoichiometries (Mock et al., 2015)
- Steady states exist for full range of expected products (Acetate, Ethanol, Lactate, 2,3-Butanediol)

Commercial in confidence

Bertsch & Müller, 2015:

"...the ATP yield for ethanol production from CO is higher than for acetate production from CO. And indeed, some acetogens like *C. autoethanogenum* produce ethanol when growing on CO."

Alternative hypothesis:

Flux Balance Analysis

Scan

Minimize: |v| (minimize absolute value of all network reactions) Steady state constraint (Sv = 0) Fixed growth rate (μ) Fixed GAM & NGAM maintenance costs Range of fixed product flux values:

 $v_{min} \le v_{product} \le v_{max}$

flux distribution for each value of v_{product}

What will be produced if acetate efflux is restricted, as it would be at lower pH?

pH shift

Predicted effect of CO uptake on product spectra

Commercial in confidence

Knock Out Prediction

Target Products (from CO) for Increased Yield

- > Ethanol
- Hydrogen

FBA scanning technique can be used to identify knock-out/-down targets.

Scanning Analysis

Ethanol

- > Nfn: NADH + H⁺ + 2 NADP⁺ + \mathbf{Fd}_{red} ⇒ NAD⁺ + 2 NADPH + \mathbf{Fd}_{ox}
- > Aor: ACETATE + $3H^+$ + $\mathbf{Fd}_{red} \rightleftharpoons$ ACETALDEHYDE + H_2O + \mathbf{Fd}_{ox}

Predicted ethanol efflux increased from 0.0 to 5.08 mmol gDCW⁻¹ h⁻¹

Scanning Analysis

Hydrogen

Scanning Analysis

Hydrogen

Conclusions

- Multi-disciplinary approach has produced a predictive model for platform chemical production in *C. autoethanogenum*
 - Experimentally derived parameters
 - Metabolic shifts
 - Knock-out/down targets