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3-hydroxypropionic acid 

Acrylamide 

Malonic acid 

3-HP production – first intermediate chemical 

 
Ø  Important building block for biorenewable polymers  

Ø  Chemical synthesis - is not commercially feasible due to 
low yield and high production cost 

 
 
 
 

  

 
 
 

 

1,3-propanediol 

Acrylic acid 
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Ø  Facultatively chemolithoautotrophic 

bacteria - grow with organic substrates or H2 
and CO2 under aerobic conditions 

 
Ø  Grow to high-cell densities under 

lithoautotrophic or heterotrophic conditions 
 
 
Ø  Produces large amounts of a biodegradable 

polymer polyhydroxybutyrate (PHB) 
 
 
 

 
 

STEM picture of Cupriavidus 
necator harbouring PHB granules 

Flagellation of strain N-1. 
Bar, 1.0 µm 

C. necator an ideal chassis for biotechnology 
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C. necator lithoautotrophic metabolism 

Ø  Carbon dioxide is fixed via the Calvin 
cycle 

Ø  Membrane bound hydrogenase directly 
connected to the electron transport chain 
(ETC) for generating ATP 

 
Ø  Soluble hydrogenase that is coupled to 

NADH synthesis that is required for the 
Calvin cycle or ETC 

Ø  Oxygen final electron acceptor (under 
anaerobic conditions nitrate is used) 
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3-HP 
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Metabolic modelling of C. necator for 3-HP production 
 
Ø  Assess 3-HP pathways 

●  Product yield 
●  Oxygen requirements 
●  ATP yield 
 

Ø  Simulate behaviour of bacteria for 
●  insertion/knockouts of reactions 
●  varying feeding ratios 

Ø  Predict metabolic interventions for 
increasing 3-HP production 
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 Computed elementary modes of 

a small model of C. necator to 
assess two 3-HP pathways 
 

Ø  Calvin cycle (13) 
Ø  Electron transport chain (6) 
Ø  3-HP pathways (13) 
Ø  PHB pathway (3) 
 
 

 

Assessing 3-HP pathways using EMA 
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Assessing 3-HP pathways using EMA 

Pathway Theoretical 
max.  Yield 
(mol/mol co2) 

O2 
requirement 
(mol/mol product) 

H2 
requirement 
(mol/mol product) 

No. of gene 
additions 

PHB 1.0 [5.57, 6.5] [20.14, 22] 0 

3-HP I. BAPAT 1.0 [3.0, 3.66] [12.0, 13.33] 0 

3-HP II. MCR 1.0 [3.27, 3.83] [12.28, 13.66] 1 

 
 
 
 

Net stoichiometry of example elementary mode: 
 

 3 CO2 + 12 H2 + 3 O2   1 3-HP + 1 H2O + H+    
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Ø  Deletion of membrane hydrogenase removes all non-

optimal modes in terms of oxygen requirements 

 

Net stoichiometry: 
 

 3 CO2 + 12 H2 + 3 O2   1 3-HP + 1 H2O + H+    



9 Genome scale model of C. necator N. Pearcy 

 
 
 

 

Metabolic modelling of C. necator for 3-HP production 
 
Ø  Assess 3-HP pathways 

●  Product yield 
●  Oxygen requirements 
●  ATP yield 
 

Ø  Simulate behaviour of bacteria for 
●  insertion/knockouts of reactions 
●  varying feeding ratios 

Ø  Predict metabolic interventions for 
increasing 3-HP production 
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Ø  GSM construction based on BioCyc database for C. necator 
H16 

 
Ø  Model constructed as set of modules: 

● BioCyc reactions (1101) 
●  Transport reactions (58) 
●  Electron transport chain (10) 
● Additional reactions (152) 
 

Ø  Minimal aerobic media: fructose, oxygen, sulfate, phosphate 
and ammonium 

 
Ø  Final model consists of 1301 reactions and 1200 metabolites 
 
 
 

 
 

 

Genome scale model of C. necator 
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Simulating reaction knockouts 

minimise : |v|

subject to :

8
>>><

>>>:

Nv = 0

vj = tj ;

v
ATPase

= J
ATPase

v
ko

= 0

Minimise the sum of reaction fluxes 

Steady state assumption 

Biomass transporters 

ATP maintenance 
Reaction knockouts 
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3-HP growth coupling strategy 1 
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3-HP growth coupling strategy 1: 
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3-HP growth coupling strategy 1: results 

0.0 
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3-HP growth coupling strategy 1: results 

•  Simulated single knockouts 
on each reaction in model  

 
 
•  Identified 7 candidate 

reactions whose deletion 
resulted in 3-HP production 
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3-HP growth coupling strategy 1: results 

•  Simulated single knockouts 
on each reaction in model  

 
 
•  Identified 7 candidate 

reactions whose deletion 
resulted in 3-HP production 

 
•  Highest 3-HP flux was 0.98, 

with 0.05 carbon yield  
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6.04 

Fructose  
12.3 

Carbon yield = 0.24 



15 Genome scale model of C. necator N. Pearcy 

 
 
 

 

Production envelopes to assess growth coupling 

Ø  LP resolved for increasing growth rates for both 
minimising and maximising 3-HP flux 

 

maximise or minimise v3�HP

subject to :

8
>>>>>><

>>>>>>:

Nv = 0

vj = tj
vATPase = JATPase

vko = 0

0  vfru  8.8 Constrain maximum 
fructose uptake 
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Production envelopes to assess growth coupling 

Wild type 

Feasible 
solution 

Infeasible 
solution 
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Production envelopes to assess growth coupling 

Wild type 

Feasible 
solution 

Infeasible 
solution 

Maximum 3-HP 
flux, ~90% 
carbon yield 
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Flux varied analysis to assess growth coupling 

Wild type 

Strategy 1 
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Flux varied analysis to assess growth coupling 

Wild type 

Strategy 1 

Strategy 2 
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Metabolic modelling of C. necator for 3-HP production 
 
Ø  Assess 3-HP pathways 

●  Product yield 
●  Oxygen requirements 
●  ATP yield 
 

Ø  Simulate behaviour of bacteria for 
●  insertion/knockouts of reactions 
●  varying feeding ratios 

Ø  Predict metabolic interventions for 
increasing 3-HP production 
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minimise : |v|

subject to :

8
>>>>>><

>>>>>>:

Nv = 0

vj = tj ;

vATPase = JATPase

vko = 0

v3HP = k

Ø  LP resolved for increasing values of 3-HP flux 
 

Ø  Identify reactions that respond to increase 3-HP, fluxes 
that decrease are candidate knockouts 

3-HP scan analysis 



19 Genome scale model of C. necator N. Pearcy 

 
 
 

 

3-HP scan analysis 

 

Ø  Simulate knockout combinations of the reactions that 
decreased as 3-HP increased 
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3-HP scan analysis: results 

Ø We identified 1 reaction that increased 3-HP 
carbon yield from 0.24 to 0.30 
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Conclusions & Outlook 
  
● Example of biology and modelling working together: 

● Using model to assess knock out strategy, and then to identify 
further knock outs that coupled 3-HP to essential biomass 
precursors 

● Using experimental data to refine model – test the predictions 
in the lab 
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Conclusions & Outlook 
  
● Example of biology and modelling working together: 

● Using model to assess knock out strategy, and then to identify 
further knock outs that coupled 3-HP to essential biomass 
precursors 

● Using experimental data to refine model – test the predictions 
in the lab 

 
● Future work: 
● Implement MOMA (minimisation of metabolic adjustments) for 

simulating knockouts 
● Implement techniques such as OptGene, for predicting 

knockouts 
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