

A genome scale model of *Cupriavidus necator* for 3-HP production

Nicole Pearcy

Synthetic Biology Research Centre

26th January, 2017

Gas fermentation for platform chemical production

3-HYDROXY-PROPRIONIC ACID

Gas fermentation for platform chemical production

3-HP production – first intermediate chemical

- > Important building block for **biorenewable** polymers
- Chemical synthesis is not commercially feasible due to low yield and high production cost

C. necator an ideal chassis for biotechnology

- Facultatively chemolithoautotrophic bacteria - grow with organic substrates or H₂ and CO₂ under aerobic conditions
- Grow to high-cell densities under lithoautotrophic or heterotrophic conditions
- Produces large amounts of a biodegradable polymer polyhydroxybutyrate (PHB)

Flagellation of strain N-1. Bar, 1.0 µm

STEM picture of *Cupriavidus necator* harbouring PHB granules

C. necator lithoautotrophic metabolism

- Carbon dioxide is fixed via the Calvin cycle
- Membrane bound hydrogenase directly connected to the electron transport chain (ETC) for generating ATP
- Soluble hydrogenase that is coupled to NADH synthesis that is required for the Calvin cycle or ETC
- Oxygen final electron acceptor (under anaerobic conditions nitrate is used)

Lithoautotrophic metabolism

C. necator lithoautotrophic metabolism

- Carbon dioxide is fixed via the Calvin cycle
- Membrane bound hydrogenase directly connected to the electron transport chain (ETC) for generating ATP
- Soluble hydrogenase that is coupled to NADH synthesis that is required for the Calvin cycle or ETC
- Oxygen final electron acceptor (under anaerobic conditions nitrate is used)

Lithoautotrophic metabolism

Metabolic modelling of C. necator for 3-HP production

Assess 3-HP pathways

- Product yield
- Oxygen requirements
- ATP yield
- Simulate behaviour of bacteria for
 - insertion/knockouts of reactions
 - varying feeding ratios
- Predict metabolic interventions for increasing 3-HP production

Assessing 3-HP pathways using EMA

Computed **elementary modes** of a small model of *C. necator* to assess two **3-HP pathways**

- > Calvin cycle (13)
- Electron transport chain (6)
- > 3-HP pathways (13)
- > PHB pathway (3)

Assessing 3-HP pathways using EMA

Pathway	Theoretical max. Yield (mol/mol co ₂)	O ₂ requirement (mol/mol product)	H ₂ requirement (mol/mol product)	No. of gene additions
РНВ	1.0	[5.57, 6.5]	[20.14, 22]	0
3-HP I. BAPAT	1.0	[3.0, 3.66]	[12.0, 13.33]	0
3-HP II. MCR	1.0	[3.27, 3.83]	[12.28, 13.66]	1

Net stoichiometry of example elementary mode:

 $3 \text{ CO}_2 + 12 \text{ H}_2 + 3 \text{ O}_2 \longrightarrow 1 3 \text{-HP} + 1 \text{ H}_2\text{O} + \text{H}^+$

Assessing 3-HP pathways using EMA

Pathway	Theoretical max. Yield (mol/mol co2)	O ₂ requirement (mol/mol product)	H ₂ requirement (mol/mol product)	No. of gene additions
РНВ	1.0	[5.57, 6.5]	[20.14, 22]	0
3-HP I. BAPAT	1.0	[3.0, 3.66]	[12.0, 13.33]	0
3-HP II. MCR	1.0	[3.27, 3.83]	[12.28, 13.66]	1

Net stoichiometry:

 $3 \text{ CO}_2 + 12 \text{ H}_2 + 3 \text{ O}_2 \longrightarrow 1 3 \text{-HP} + 1 \text{ H}_2\text{O} + \text{H}^+$

Deletion of membrane hydrogenase removes all nonoptimal modes in terms of oxygen requirements

Metabolic modelling of C. necator for 3-HP production

Assess 3-HP pathways

- Product yield
- Oxygen requirements
- ATP yield
- Simulate behaviour of bacteria for
 - insertion/knockouts of reactions
 - varying feeding ratios
- Predict metabolic interventions for increasing 3-HP production

Genome scale model of *C. necator*

- GSM construction based on BioCyc database for C. necator H16
- Model constructed as set of modules:
 - BioCyc reactions (1101)
 - Transport reactions (58)
 - Electron transport chain (10)
 - Additional reactions (152)
- Minimal aerobic media: fructose, oxygen, sulfate, phosphate and ammonium

Final model consists of 1301 reactions and 1200 metabolites

Simulating reaction knockouts

3-HP growth coupling strategy 1: results

3-HP growth coupling strategy 1: results

Chorismate

3-HP growth coupling strategy 1: results

GLN Simulated single knockouts Pyruvate on each reaction in model PRPP α-L-alanine Anthranilate PPI Kyrurenine Identified **7 candidate** N-5-phosphoribosyl-• Formate anthranilate reactions whose deletion resulted in 3-HP production N-formylkynurenine Carboxyphenylaminodeoxyribulose Highest 3-HP flux was **0.98**, with 0.05 carbon yield Trptophan CO_2 Indole-3-glycerol-p GAP Biomass Serine

Production envelopes to assess growth coupling

maximise or minimise $v_{3-\text{HP}}$ subject to : $\begin{cases} N\mathbf{v} = 0 \\ v_j = t_j \\ v_{\text{ATPase}} = J_{\text{ATPase}} \\ v_{\text{ko}} = 0 \\ 0 \le v_{\text{fru}} \le 8.8 \end{cases} \longleftarrow \text{Constrain maximum}$

LP resolved for increasing growth rates for both minimising and maximising 3-HP flux

Production envelopes to assess growth coupling

Production envelopes to assess growth coupling

Flux varied analysis to assess growth coupling

Flux varied analysis to assess growth coupling

Metabolic modelling of C. necator for 3-HP production

- Assess 3-HP pathways
 - Product yield
 - Oxygen requirements
 - ATP yield
- Simulate behaviour of bacteria for
 - insertion/knockouts of reactions
 - varying feeding ratios
- Predict metabolic interventions for increasing 3-HP production

3-HP scan analysis

minimise :
$$|\mathbf{v}|$$

subject to :
$$\begin{cases} Nv = 0\\ v_j = t_j;\\ v_{\text{ATPase}} = J_{\text{ATPase}}\\ v_{\text{ko}} = 0\\ v_{\text{3HP}} = k \end{cases}$$

- LP resolved for increasing values of 3-HP flux
- Identify reactions that respond to increase 3-HP, fluxes that decrease are candidate knockouts

3-HP scan analysis

Simulate knockout combinations of the reactions that decreased as 3-HP increased

3-HP scan analysis: results

We identified 1 reaction that increased 3-HP carbon yield from 0.24 to 0.30

Conclusions & Outlook

- Example of biology and modelling working together:
 - Using model to assess knock out strategy, and then to identify further knock outs that coupled 3-HP to essential biomass precursors
 - Using experimental data to refine model test the predictions in the lab

Conclusions & Outlook

- Example of biology and modelling working together:
 - Using model to assess knock out strategy, and then to identify further knock outs that coupled 3-HP to essential biomass precursors
 - Using experimental data to refine model test the predictions in the lab
- Future work:
 - Implement MOMA (minimisation of metabolic adjustments) for simulating knockouts
 - Implement techniques such as OptGene, for predicting knockouts

Acknowledgements

Cell Systems Modelling Group

- Mark Poolman
- David Fell
- Hassan Hartman

SBRC group

- Jamie Twycross
- Frederik Walter