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project —ALP
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@ The Differential Equations (sirr
@ 4. Simulating Dynamics 3.0 & NADPH
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Behaviour = — A 0OPH
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Over—Expression 2' u 1oks)
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@ Kinetic models
@ The threonine pathway

@ Components of the modelling Flx (

SR vmll+ (aspxatp — asppradp/kegak)/ ((kllx (1+(thr/klthr)
erosmmnoi  / (1+(thr/ (alphaxklthr)) »+nakl) + (kllxaspp/klaspp) +
S 2SP) * (klatps (1+adp/kladp) +atp))

2 e + vml3* (asp*atp — asppradp/kegak)/((1 + (lys/kllys)
o B, aspp/kl3aspp)

Joonwour + asp) * (kl3atp=* (1l+adp/kl3adp) +atp))

e )

® Simulating Enzyme # F1 is a factor to allow modulation of enzyme groug

Over—Expression — 2
@ Simulated threonine
accumulation

@ Further details asd: aspp + nadph —> asa + l’ladp + Pl

The Entner-Duodoroff Pathway (Vme* (aspp*nadph — asa*nadp*Pl/kzeq> ) /

z\lljr;a?tcontrolsthehighglucose ((kZaSpp*(l + asa/kZasa)*(l + Pl/k2p) + aSpp)*
(k2nadph= (1 + nadp/k2nadp) + nadph))

Model validation via response
analysis
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@ The threonine pathway
® Components of the modelling
project

® 1. Kineic data #Aspartate kinase 1

® Example: aspartate kinase | . .

@ Product inhibition of AK | vmll = 0.402+prot+«1.49 #1.49 is assay correction fac
@ 2. Generating Pathway Data k 1 1 — O . 9 7

@ 3. Simulator (ScrumPy) Input

klthr=0.167 alpha=2.47 nakl=4.09

@ The Differential Equations

@ 4. Simulating Dynamics k l a Spp — O O l '7
@ 5. Extrapolating to in Vivo :

Behavi = =
O“;xt:rn%Llj"r Concentrations k 1 atp O ° 9 8 k l adp O ‘ 2 5
@ Simulating Enzyme keqak:6 . 3 9e_04

Over—Expression
@ Simulating Enzyme

Over—Expression — 2
@ Simulated threonine #— a Sp a rt at e k i nase 3

accumulatior)
® Further detals vml3 = 0.283xprot+1.12 #1.12 is assay correction fac

The Entner-Duodoroff Pathway k 1 3 — O . 3 2 3 k :I_ l y S = O . 3 9 l
::\lljr;a?t controls the high glucose nak 3 = 2 . 8 k1 3 atp: O . 27 5
Model validation via response k 1 3 a Spp - O ° O l 7 k l 3 adp - O : 2 5

analysis
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® Components of the modelling
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1. Kinei data Differential equations:
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@ Product inhibition of AK |

02 G ting Path Dat .
os smumorsoummy . 1:@SPP’ = V[ak] - V[asd]
@ ScrumPy Input — 2

@ 4. Simulating Dynamics . ) — [ ] - [ ]
@ 5. Extrapolating to in Vivo 2 asa V an V hd h

Behaviour
@ “External” Concentrations

@ Simulating E . b -
Ol\r/?;rj—zypies:g:e 3hS - V[hdh] V[hk]
@ Simulating Enzyme
Over—Expression — 2

@ Simulated threonine 4hSp’ = - V[tS] + V[hk]

accumulation
@ Further details

The Entner-Duodoroff Pathway

What controls the high glucose
flux?

Model validation via response
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F
project
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, ASA N v
@ 2. Generating Pathway Data
@ 3. Simulator (ScrumPy) Input A K D H H K

@ ScrumPy Input — 2
o smangonne S :::aspF’H asa —p hs —»-hsP —p-Thr
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@ Kinetic models

@ The threonine pathway

® Components of the modeling Metabolite | Content, nmol.(g dry wt)~! | Concentration, mM

project

@ 1. Kinetic dat

() Exarl':;: aZertate kinase | asp 2854 1 . 34
@ Product inhibition of AK |

@ 2. Generating Pathway Data th r 7444 3 . 49

@ 3. Simulator (ScrumPy) Input

@ ScrumPy Input — 2 |yS 984 046

@ The Differential Equations

@ 4. Simulating Dynamics ATP 2792 1 . 3 1

@ 5. Extrapolating to in Vivo

ADP 352 0.17

@ Simulating Enzyme

Over—Expression N A D P 1 34 1 O . 63

@ Simulating Enzyme

Over—Expression — 2 NA D P H 1 1 97 O . 56

@ Simulated threonine
accumulation

@ Further details P | N D 5

The Entner-Duodoroff Pathway

What controls the high glucose
flux?

Model validation via response
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@ Kinetic models 1 4
@ The threonine pathway .

® Components of the modelling

project
@ 1. Kinetic data
® Example: aspartate kinase |
@ Product inhibition of AK |
@ 2. Generating Pathway Data
@ 3. Simulator (ScrumPy) Input 1 2 B
@ ScrumPy Input — 2 .
@ Simulating Enzyme
Over—Expression _J
@ Simulating Enzyme 1 . O
Over—Expression — 2
@ Simulated threonine
accumulatior) 0 9 I I
@ Further details .
The Entner-Duodoroff Pathway

@ The Differential Equations
What controls the high glucose D 2 0 40

@ 4. Simulating Dynamics
flux?

@ 5. Extrapolating to in Vivo

Behaviour
@ “External” Concentrations

Relative flux

Model validation via response

Fold over-expression of AK I
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@ Kinetic models

@ The threonine pathway

® Components of the modelling
project

@ 1. Kinetic data

® Example: aspartate kinase |

@ Product inhibition of AK |

@ 2. Generating Pathway Data

@ 3. Simulator (ScrumPy) Input

@ ScrumPy Input — 2

@ The Differential Equations

@ 4. Simulating Dynamics

@ 5. Extrapolating to in Vivo

Behaviour
@ “External” Concentrations

@ Simulating Enzyme
Over—Expression
@ Simulating Enzyme

Relative flux

Over—Expression — 2
@ Simulated threonine

accumulation |
@ Further details U- 5

The Entner-Duodoroff Pathway

0.0 | - - -
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Model validation via response Fold over-expression of AK |- HDH |
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@ The threonine pathway

® Components of the modelling
project

@ 1. Kinetic data

® Example: aspartate kinase |

@ Product inhibition of AK |

@ 2. Generating Pathway Data

@ 3. Simulator (ScrumPy) Input

@ ScrumPy Input — 2

@ The Differential Equations

@ 4. Simulating Dynamics

@ 5. Extrapolating to in Vivo
Behaviour

@® “External” Concentrations

@ Simulating Enzyme
Over—Expression

@ Simulating Enzyme
Over—Expression — 2

@ Simulated threonine

50 x AK |/HDH |

M
n

M
O

—
o

Intracellular threonine, mM
on

50 x AK I

accumulation
@ Further details

n

The Entner-Duodoroff Pathway tlr 8

What controls the high glucose
flux? D ———|——)|——————

Model validation via response

analysis 0.2 0.3 04 0.5 0.6 0.7 0.
Relative growth rate
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@ Kinetic models Refe re n CeS

@ The threonine pathway

@ Components of the modelling mC Chassagnole et aI, Biochem J. 356, 41 5—423, 425—432,

roject
o' Kinotiodata 433-434, (2001)
® Example: aspartate kinase |
@ Product inhibition of AK |
@ 2. Generating Pathway Data
@ 3. Simulator (ScrumPy) Input

eswmmymi2  We'll return to modelling the control of threonine synthesis
e
Behaviour

@ “External” Concentrations

@ Simulating Enzyme
Over—Expression

@ Simulating Enzyme
Over—Expression — 2

@ Simulated threonine

accumulation
@ Further details

The Entner-Duodoroff Pathway

What controls the high glucose
flux?

Model validation via response
analysis
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Levels
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® Acknowledgements

® Zymomonas mobilis

@ Entner—Doudoroff Pathway

® ED Model — Upper Part

® ED Model — Lower Part

@® Glucokinase Rate Equation

® Model Optimization

@ Steady State Metabolite
Levels

What controls the high glucose
flux?

Model validation via response
analysis

Conclusions

m Has very high rates of glucose fermentation to ethanol and
high tolerance to both.

m Uses Entner—Doudoroff (ED) pathway of glucose catabolism.

®m Uncoupled growth phenomenon — whereby rates of
catabolism exceed the requirements of anabolism. (98%
glucose is converted to catabolic products.)

® Small genome size and reduced central metabolic network
make it attractive for metabolic engineering.

m Electron transport chain poorly coupled to ATP synthesis
could allow flexibility over redox state of engineered
products.

B Good experimental data on kinetic properties of its ED
enzymes, as well as metabolite measurements in vivo and in
cell-free systems.
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glucose-6P
Constructing a threonine

pathway model N

The Entner-Duodoroff Pathway
@ Acknowledgements 6P- gluconolactone

® Zymomonas mobilis

NAD(P)H

@ Entner—Doudoroff Pathway v
@ ED Model — Upper Part 6P- gluconate
® ED Model — Lower Part H,0

@ Glucokinase Rate Equation 2-keto-6-deoxy-P-gluconate

® Model Optimization

@ Steady State Metabolite glyceraldehyde-3P
Levels

NADH
1,3-diphosphoglycerate

What controls the high glucose
flux?

Model validation via response ATP
analysis 3P-glycerate

Conclusions
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® Acknowledgements
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@ Entner—Doudoroff Pathway
® ED Model — Lower Part

@® Glucokinase Rate Equation

® Model Optimization
@ Steady State Metabolite
Levels

What controls the high glucose
flux?

Model validation via response
analysis

Conclusions
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Constructing a threonine ADP ATP
pathway model ATPase 3PGA
ATP
The Entner-Duodoroff Pathway ENO

® Acknowledgements

® Zymomonas mobilis

@ Entner—Doudoroff Pathway
® ED Model — Upper Part

® ED Model — Lower Part

@® Glucokinase Rate Equation

2PGA

ENO

ADP +ADP «— ATP+AMP
ADKinase

PEP
ADP
PYK
PYR
co, 14 PDC

® Model Optimization
@ Steady State Metabolite
Levels

What controls the high glucose
flux?

Model validation via response

analysis
Conclusions AcAld
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transport
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® Acknowledgements VGK . . GL UC6P*ADP
® Zymomonas mobilis GLUCZ'n *KATP*(1‘|‘ %) * (GL UC’LTL * ATP Keq )
@ Entner—Doudoroff Pathway — ?

@ ED Model — Upper Part VGK 1 —l_ GLUCZ'n GLUCG6P * ( 1 ATP _|_ ADP )

® ED Model — Lower Part KGLUCZTL KGLUC6P KATP*(1+M) KADP

® Glucokinase Rate Equation K;,cgrLucep

® Model Optimization
@ Steady State Metabolite
Levels

What controls the high glucose
flux?

Model validation via response
analysis

Conclusions
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m With these adjustments, the glucose consumption flux was
comparable with that observed in culture.

® The model could also match glucose consumption reported
for cell-free extracts with added ATPase.
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®m Which enzyme activities control the flux?

@ Control Coefficients on

Glucose Flux
® Control Coefficients as a

il m We can answer this with the model by calculating the
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analysis

Conclusions

B This sensitivity analysis of metabolic networks is known as
Metabolic Control Analysis
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Glucose uptake rate

Constructing a threonine

e~ Enzyme 4.9 4.5 0.2
e Entner Duedorol Py Glucokinase -0.08 -0.08 -0.06
o Enolase 023 0.11  0.02
Pyruvate decarboxylase 0.27 0.11 0.08
e ATPase 0.36 0.70 0.71
o vldaton via esponse Sum of all other enzymes 0.22 0.16 0.25
e Total 1.00 1.00 1.00

B The glucose uptake values are for the model, the model
adjusted to match an experiment with ATPase inhibition, and
to match an experiment with cell-free extract.

m Experiments on over-expression of glycolytic enzymes have
not shown increases in glucose flux.
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Conclusions

Model validation via response analysis
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... are ratios of the flux and concentration control coefficients
to the same perturbation of enzyme activity.
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What controls the high glucose
flux?

o aenvaesene - For @ small change in enzyme E affecting flux J and metabolite

analysis

S, we don’t need to know the exact size of the change in E:

@® Flux and Concentration
Responses

@ Validation with ATP:Flux S
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From experimental literature, we may have a finite change
response to a perturbation X, affecting one or more enzymes:

| Aln S;
Si,J 7
Fx™ = AlnJ
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. The enzyme’s flux control coefficient gives the % change in
o : L

et contels e i e flux, J, for a 1% change in enzyme activity.

flux?

s W An enzyme’s concentration control coefficient gives the %

® Co—Response Coefficients . . o .

SHTE e change in metabolite S for a 1% change in enzyme.

Responses
@ Validation with ATP:Flux
Co—Response

B The enzyme’s co—response coefficient gives the % change
in metabolite .S by an enzyme activity change causing a 1%
change in flux J.

Conclusions
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e, W A Kinetic model of the native ED pathway has been built and
R shows that the high rates of glucose metabolism are linked
It to a high consumption of ATP.
wase - ® The model is consistent with failure to increase glycolytic flux
S by over—expression of glycolytic enzymes, and the functional
e coupling between glycolytic rate and ATP concentrations.

m [t remains to apply this model to exploration of metabolic
engineering towards the novel products.



OXFORD

BROOKES Further Details

UNIVERSITY
Consructng s teorine m Agris Pentjuss, llona Odzina, Andrejs Kostromins, David A
The Entner-Duodoroff Pathway Fe”’ Eglls Stalldzans! and UIdIS Kalnenleks
What controls the high glucose BIOteChnO/Oglca/ pOtentla/ Of resplrlng Zymomonas mObllls:
flox? A stoichiometric analysis of its central metabolism. J.
zll:::;i\;alidation via response BlOtGChﬂO'Ogy, 165_1 _1 O, 201 3
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® Summary

® Further Detail A. Fell. Kinetic modeling of Zymomonas mobilis
Entner-Doudoroff pathway: insights into control and
functionality. Microbiology 159: 2674-2689 (2013)

m Uldis Kalnenieks, Agris Pentjuss, Reinis Rutkis, Eqils
Stalidzans and David A. Fell. Modeling of Zymomonas
mobilis central metabolism for novel metabolic engineering
strategies. Frontiers Microbiol. 5:42.




	Constructing a threonine pathway model
	Kinetic models
	Kinetic models

	The threonine pathway
	Components of the modelling project
	1. Kinetic data
	1. Kinetic data
	1. Kinetic data
	1. Kinetic data

	Example: aspartate kinase I
	Product inhibition of AK I
	2. Generating Pathway Data
	3. Simulator (ScrumPy) Input
	ScrumPy Input — 2
	The Differential Equations
	4. Simulating Dynamics
	5. Extrapolating to in Vivo Behaviour
	``External'' Concentrations
	Simulating Enzyme Over–Expression
	Simulating Enzyme Over–Expression — 2
	Simulated threonine accumulation
	Further details

	The Entner-Duodoroff Pathway
	Acknowledgements 
	Zymomonas mobilis
	Entner–Doudoroff Pathway
	ED Model — Upper Part
	ED Model — Lower Part
	Glucokinase Rate Equation
	Model Optimization
	Steady State Metabolite Levels

	What controls the high glucose flux?
	Control of Glucose Flux
	Control Coefficients on Glucose Flux
	Control Coefficients as a function of ATPase

	Model validation via response analysis
	Co–Response Coefficients
	Co–Response Coefficients

	Flux and Concentration Responses
	Validation with ATP:Flux Co–Response

	Conclusions
	Summary
	Further Details


