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Understanding Feedback Inhibition
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Control at Feedback–Inhibited Enzymes

Classical biochemical theory proposed that feedback–inhibited
enzymes at the start of a pathway were likely ‘rate–limiting
steps’.

Early opposition to Metabolic Control Analysis centered on the
prediction by the latter that such enzymes would have low
control coefficients.

One example of the experimental evidence follows; others will
come later.
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Feedback–inhibited enzymes: ATCase

Liu et al (1993)1 showed that it took a 19–fold decrease in
ATCase to produce a 1.8–fold decrease in growth rate
attributable to pyrimidine biosynthesis. (= Approximate flux
control coefficient of < 0.05.)
Nevertheless, the authors state that:

Assuming that ATCase activity is the rate–limiting step
in pyrimidine biosynthesis . . . (a situation which is highly
likely because of the enzyme’s position in the pathway,
its pattern of regulation and the toxicity of its product) . . .

1C. Liu et al, J. Bacteriol. 175, 2363–2369 (1993).
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Feedback inhibition and control analysis
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This is a generalized feedback inhibition loop, with the
enzymes represented by numbered boxes. Metabolite S3

inhibits enzyme 1.
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Feedback inhibition and control analysis

Feedback alters the control distribu-
tion. The flux control coefficients of
enzymes 1 (curve a) and 4 (curve b)
of the previous pathway are plotted
against the inhibition constant for S3

on enzyme 1 in this simulated exam-
ple. The inhibition weakens from left
to right.
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Properties of feedback inhibition

1. Feedback inhibition is an antidote to the tendency of
reactions at the start of a pathway to have the greater
control of flux.

2. Feedback inhibition improves homoeostasis of the
concentration of the feedback metabolite;increased
cooperativity of the inhibition specifically enhances this
effect.

3. Feedback inhibition improves the stability of pathways in
that it speeds up the return to a steady state after random
perturbation,
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Supply–Demand Analysis

e.g. for a linear supply–demand pathway:

✲X0
✲S X1supply demand

CS
supply

CJ
supply

=
1

εdemand
S

CS
demand

CJ
demand

=
1

ε
supply
S
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Flux control and metabolite homeostasis: the

Homeostasis of metabolite concentrations is not compatible
with control located in the supply reactions. (Q =

-εsupplyS /εdemand
S ; 1: CJ

supply , 2 & 3: CS
supply for two values of εdemand

S .)
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Flux control and metabolite homeostasis: the

Homeostasis of metabolite concentrations is compatible with

control located in the demand reactions. (Q = -εsupplyS /εdemand
S ; 1:

C
J
demand, 2 & 3: CS

demand for two values of εsupplyS .)
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Metabolism and Genetics
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MCA and Genetics

Kacser & Burns, (1981). The molecular basis of dominance. Genetics

97, 639-666.
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MCA and genetics — 2

Typically 95% of loss–of–activity mutations are recessive in
terms of functional phenotype, implying that the majority of
enzymes have small flux control coefficients.

Conversely, rat liver hexokinase IV (glucokinase) has a flux
control coefficient of ≈ 1 on liver glycogen synthesis. In
humans, MODY–2 diabetes is linked to a mutation in this
enzyme and shows co–dominance (i.e. heterozygotes show an
intermediate phenotype).
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Hexokinase IV over–expression

Hexokinase IV was over–expressed in hepatocytes resulting in
faster glycogen synthesis from glucose (Agius et al, J. Biol. Chem. 271, 30479–30486,

1996).
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Metabolism and Drug Action
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Example: Oxidative Phosphorylation

From "Metabolic pathways of Biochemistry":

http://www.gwu.edu/ mpb/index.html
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Inhibitor Titration

From: Rossignol et al, (1999) J Biol Chem, 274, 33426–33432.
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Flux v. Degree of Inhibition
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Inhibitor Titrations and Control Coefficients

C
Jresp

CmplxIV =
slope a
slope b

= 0.2

From: Rossignol et al, (2000) Biochem J, 347, 45-53.
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MCA and Drug Action

C
Jresp

CmplxIII = 0.02 C
Jresp

CmplxI = 0.26

(Results of Jean-Pierre Mazat’s group, Bordeaux.)
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MCA and Drug Target Selection

The action of a candidate drug on GAR transformylase in
purine synthesis in human leukaemia T cells.
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GART = 0.01 (Results of Pogson’s group, Wellcome.)
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Transketolase as a drug target

Transketolase, in the pentose phosphate pathway has a
requirement for thiamine as a cofactor. Cancer patients are
often thiamine–deficient.

But transketolase has a control coefficient on growth of 0.9 in
thiamine-depleted cells, so added thiamine drives nucleic acid
synthesis and cancer growth.

Restoring normal thiamine levels increases cancer growth up
to 164%. However, transketolase is therefore a potential target
for cancer therapy .

Begona, C-A et al. Eur. J. Biochem 268 (2001) 4177-4182.
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Enzyme overexpression
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Finite change theory

(Rankin Small & Henrik Kacser, 1993)

The factor f by which the pathway flux will increase for an r

fold increase in the amount of enzyme activity in a linear
pathway is:

f =
1

1−
r − 1

r
CJ

E

where CJ
E is the flux control coefficient of the enzyme E on the

pathway flux, J .
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Limitations on the flux response
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Yeast Anaerobic Glycolysis

glucose

↓ hk

G–6–P

↓ pgi

F–6–P

↓ pfk

F–1,6–BP

↓ ald

DHAP ⇋ GAP tim

↓ gapdh

1,–BPG

↓ pgk

3–PG

↓ pgm

2–PG

↓ eno

PEP

↓ pk

pyruvate

↓ PDH, ADH

ethanol



Introduction

Understanding Feedback

Inhibition

Metabolism and Genetics

Metabolism and Drug Action

Enzyme overexpression

● Finite change theory

● Limitations on the flux

response

● Yeast Anaerobic Glycolysis

● Engineering yeast ethanol

production

● Control at Feedback–Inhibited

Enzymes

● Potato Tuber Glycolysis from

Starch

● Over–expressing PFK in

potato tubers

● Metabolite changes in

transgenics

● Flux control coefficients in

potatoes

● Concentration control

coefficients

Summary

C1netW2 2015 L6: - p. 28

Engineering yeast ethanol production

Over–production of glycolytic enzymes on multicopy plasmids

Enzyme (x WT) EtOH flux

(x WT)

HK 13.9 1.07

GPI 11.3 0.91

PFK 3.7 1.02

PGK 7.5 0.97

PGM 12.2 1.07

PK 8.6 1.07

PD 3.7 0.85

ADH 4.8 0.89

PFK + PK 5.6+1.3 1.07

PD + ADH 3.7 + 5.9 0.94
Schaaff et al, Yeast 5, 285–290 (1989)
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Control at Feedback–Inhibited Enzymes

The result for PFK suggests that its flux control coefficient is
low. In addition, complementation of pfk- mutants with a
non–allosteric enzyme from D. discoideum gave the same
growth as wild–type.1

No flux change was obtained with 30–fold amplification of the

PEP–inhibited enzyme of potato tubers.2

This is consistent with predictions from control analysis.
Kacser & Burns (1973) showed that feedback would transfer
flux control downstream to steps utilising the feedback
metabolite.
1A. M. Estévez et al, FEBS Lett, 374, 100–104, (1995). 2M. Burrell et

al, Planta, 194, 95–101 (1994); S. Thomas et al, Biochem. J. 322,

119–127 (1997).
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Potato Tuber Glycolysis from Starch

glucose

↓ hk

G–1–P

↓ pgm

G–6–P

↓ pgi

F–6–P

↓ pfk

F–1,6–BP

↓ ald

DHAP ⇋ GAP tim

↓ gapdh

1,–BPG

↓ pgk

3–PG

↓ pgm

2–PG

↓ eno

PEP

↓ ‘pk’ etc

pyruvate, TCA cycle etc
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Over–expressing PFK in potato tubers

Burrell et al (1994) Planta, 194, 95-101.
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Metabolite changes in transgenics
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Flux control coefficients in potatoes
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Concentration control coefficients
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Conclusion

■ The variability of flux control coefficients is central to
understanding the effects of mutations and drugs.

■ Enzymes experiencing feedback inhibition have low flux
control coefficients.

■ Metabolite homeostasis is the dominant function of many
control mechanisms, including feedback inhibition.

■ It’s hard to increase metabolic flux by
activating/overexpressing a single enzyme.
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