Further Enzyme Kinetics for Model Building

C1net Workshop 2; Day 2

dfell@brookes.ac.uk

http://mudshark.brookes.ac.uk

Enzyme Inhibition

- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages

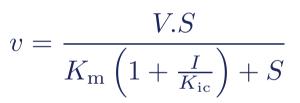
Two Substrate Enzymes

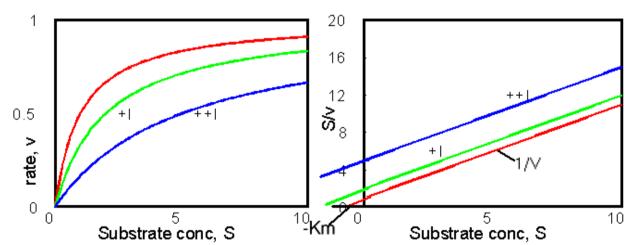
Allosteric Enzymes

Enzyme Inhibition


BROOKES Competitive Inhibition

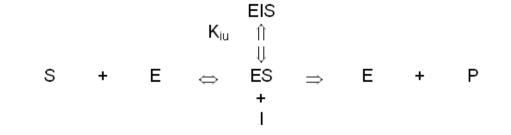
Enzyme Inhibition


- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages

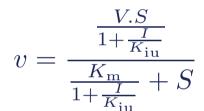

Two Substrate Enzymes

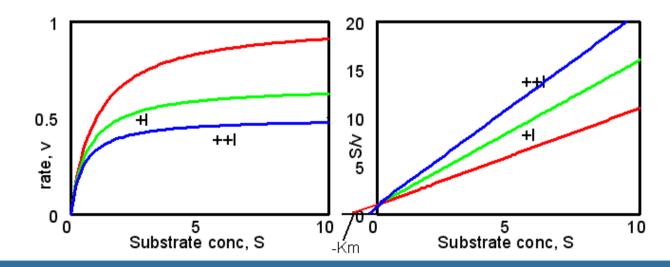
Allosteric Enzymes

In competitive inhibition, $K_{\rm m}$ is increased but V remains unchanged:


BROOKES Uncompetitive Inhibition

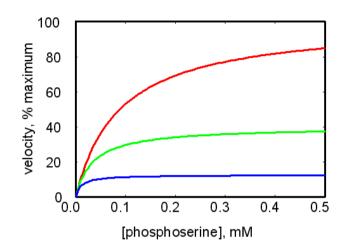
Enzyme Inhibition


- Competitive Inhibition
 Uncompetitive Inhibition
- Uncompetitive Inhibition
- Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages


Two Substrate Enzymes

Allosteric Enzymes

I binds only to ES and both $K_{\rm m}$ and V are reduced. The inhibition is stronger at higher substrate concentrations.


BROOKES Uncompetitive Inhibition Example

Enzyme Inhibition

- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages

Two Substrate Enzymes

Allosteric Enzymes

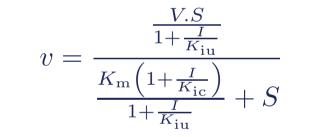
Inhibition of mammalian phosphoserine phosphatase at 0, 1 and 6 mM serine. The enzyme is the last step of the 3–step serine synthesis pathway.

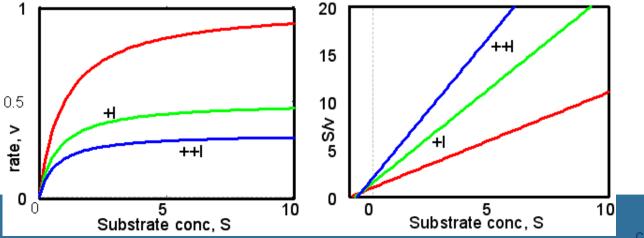
Glyphosate — the herbicide 'Roundup' — is an uncompetitive inhibitor of 3–phosphoshikimate–1–carboxyvinyl transferase, a step in the synthesis of aromatic amino acids. Plants die of the accumulation of toxic shikimate.

Triclosan is a bacteriocide that is an uncompetitive inhibitor of enoyl reductase in fatty acid biosynthesis.

BROOKES UNIVERSITY Mixed Inhibition

Enzyme Inhibition


- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages


```
Two Substrate Enzymes
```

Allosteric Enzymes

I binds to E and ES, and V is reduced; $K_{\rm m}$ may increase or decrease depending whether the competitive or uncompetitive component is dominant.

BROOKES Substrate Inhibition

Enzyme Inhibition

- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages

Two Substrate Enzymes

Allosteric Enzymes

Occurs as a result of a second substrate molecule binding more weakly and inhibiting the enzyme. The usual reason is that in a two substrate enzyme, one of the substrates also acts as a partial analogue of the second.

$$v = \frac{V.S}{K_{\rm m} + S + \frac{S^2}{K_{\rm is}}}$$

e.g. Inhibition of heart muscle lactate dehydrogenase by pyruvate.

BROOKES Inhibition - the main messages

Enzyme Inhibition

- Competitive Inhibition
- Uncompetitive Inhibition
- Uncompetitive Inhibition
 Example
- Mixed Inhibition
- Substrate Inhibition
- Inhibition the main messages

Two Substrate Enzymes

Allosteric Enzymes

- 1. Inhibition terms in enzyme rate equations have the same hyperbolic form as the substrate saturation, and are characterised by a K_i .
- 2. The different types are marked by different effects on V and $K_{\rm m}$ or both.
- 3. Uncompetitive and mixed may seem unusual, but they often arise as forms of product inhibition in two–substrate enzymes, which leads to ...

Enzyme Inhibition

Two Substrate Enzymes

- •1. Random order
- 2. Compulsory order
- 3. Double displacement (ping–pong):
- Rate equation for two substrate enzymes
- Generic reversible two substrate equation
- Haldane relationship

Allosteric Enzymes

Two Substrate Enzymes

BROOKES 1. Random order

Mechanism:

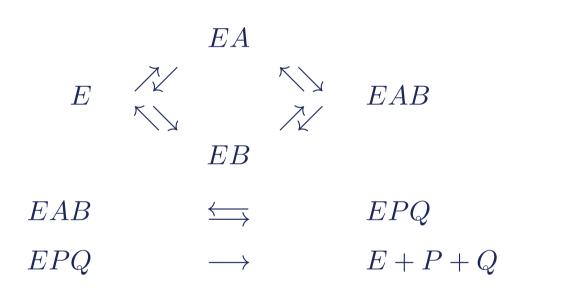
Enzyme Inhibition

Two Substrate Enzymes

1. Random order

● 2. Compulsory order

 3. Double displacement (ping-pong):


 Rate equation for two substrate enzymes

 Generic reversible two substrate equation

Haldane relationship

Allosteric Enzymes

BROOKES 2. Compulsory order

Enzyme Inhibition

Two Substrate Enzymes

●1. Random order

● 2. Compulsory order

 3. Double displacement (ping–pong):

 Rate equation for two substrate enzymes

 Generic reversible two substrate equation

Haldane relationship

Allosteric Enzymes

 $A + B \iff P + Q$

Mechanism:

 $E + A \quad \longleftrightarrow \quad EA$ $EA + B \quad \longleftrightarrow \quad EAB$ $EAB \quad \Longleftrightarrow \quad EPQ$ $EPQ \quad \longrightarrow \quad E + P + Q$

BROOKES 3. Double displacement (ping-pong):

Enzyme Inhibition

- Two Substrate Enzymes
- Random order
- 2. Compulsory order
- 3. Double displacement (ping–pong):

Mechanism:

- Rate equation for two substrate enzymes
- Generic reversible two substrate equation
- Haldane relationship

Allosteric Enzymes

 $A + B \iff P + Q$

 $E + A \quad \longleftrightarrow \quad EA$ $EA \quad \longleftrightarrow \quad EX + P$ $EX + B \quad \longleftrightarrow \quad EXB$ $EXB \quad \longrightarrow \quad E + Q$

Rate equation for two substrate enzymes

With slight variations for different mechanisms, a general equation in the absence of products is:

Enzyme Inhibition

Two Substrate Enzymes

OXFORD

UNIVERSITY

- Random order
- 2. Compulsory order
- 3. Double displacement (ping-pong):

 Rate equation for two substrate enzymes

- Generic reversible two substrate equation
- Haldane relationship

Allosteric Enzymes

 $v = \frac{VAB}{K_{iA}K_{B} + K_{B}A + K_{A}B + AB}$

For high B, with A varied, both top and bottom lines of the right hand side can be divided by AB to give:

$$v = \frac{V}{\frac{K_{iA}K_{B}}{AB} + \frac{K_{B}}{B} + \frac{K_{A}}{A} + 1}$$

We can ignore terms divided by B to give:

$$v \approx \frac{V}{\frac{K_{\rm A}}{A} + 1} = \frac{VA}{K_{\rm A} + A}$$

This is the Michaelis–Menten equation, and when B is fixed high and A varied, the enzyme behaves like a single substrate enzyme, and K_A is the K_m for A.

BROOKES Generic reversible two substrate equation

Enzyme Inhibition

Two Substrate Enzymes

- Random order
- 2. Compulsory order
- 3. Double displacement (ping-pong):
- Rate equation for two substrate enzymes
- Generic reversible two substrate equation
- Haldane relationship

Allosteric Enzymes

The following equation is an approximation for a reaction A + B \Leftrightarrow P + Q, where P is competitive with substrate A and Q with substrate B. It is more important to get the product inhibition type correct than to worry too much about the differences between K_A and K_{iA} .

$$v = \frac{V_{\rm f} \left(AB - \frac{PQ}{K_{\rm eq}}\right)}{\left(K_{\rm A} \left(1 + \frac{P}{K_{\rm P}} + \frac{I}{K_{\rm iI}}\right) + A\right) \left(K_{\rm B} \left(1 + \frac{Q}{K_{\rm Q}}\right) + B\right)}$$

BROOKES Haldane relationship

Enzyme Inhibition

Two Substrate Enzymes

- Random order
- 2. Compulsory order
- 3. Double displacement (ping–pong):
- Rate equation for two substrate enzymes
- Generic reversible two substrate equation
- Haldane relationship

Allosteric Enzymes

The derivation assumes the existence of a Haldane relationship:

$$K_{\rm eq} = \frac{V_{\rm f} K_{\rm P} K_{\rm Q}}{V_{\rm r} K_{\rm A} K_{\rm B}}$$

Haldane relationships vary with the two–substrate mechanism, but most of the mechanisms have the above relationship, except with one term in the numerator and one in the denominator equal to a K_{iS} term. This is not critical here because the term $K_A K_B$ in is taking the place of the term $K_{iA} K_B$.

Enzyme Inhibition

Two Substrate Enzymes

Allosteric Enzymes

- Feedback Inhibition:
 Discovery
- Feedback Inhibition:
 Schematic & Role
- ATCase
- Haemoglobin an Honorary Enzyme
- The Hill Equation
- The Hill Plot
- Allosteric Enzymes:

Characteristics

• K Systems and V Systems

Allosteric Enzymes

BROOKES Feedback Inhibition: Discovery

Enzyme Inhibition

Two Substrate Enzymes

Allosteric Enzymes

- Feedback Inhibition:
 Discovery
- Feedback Inhibition:
 Schematic & Role
- ATCase
- Haemoglobin an Honorary Enzyme
- The Hill Equation
- The Hill Plot
- Allosteric Enzymes:
- Characteristics
- K Systems and V Systems

1. Umbarger, 1956: the first enzyme in the pathway to isoleucine, threonine deaminase, is specifically and strongly inhibited by isoleucine. This *feedback inhibition* is highly specific since the closely similar leucine and valine are not effective.

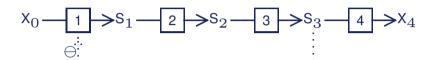
2. Yates and Pardee, 1956: aspartate transcarbamylase in *E. coli*, the first step in the synthesis of pyrimidine nucleotides from aspartate, is inhibited by the pathway end product CTP.

BROOKES Feedback Inhibition: Schematic & Role

Enzyme Inhibition

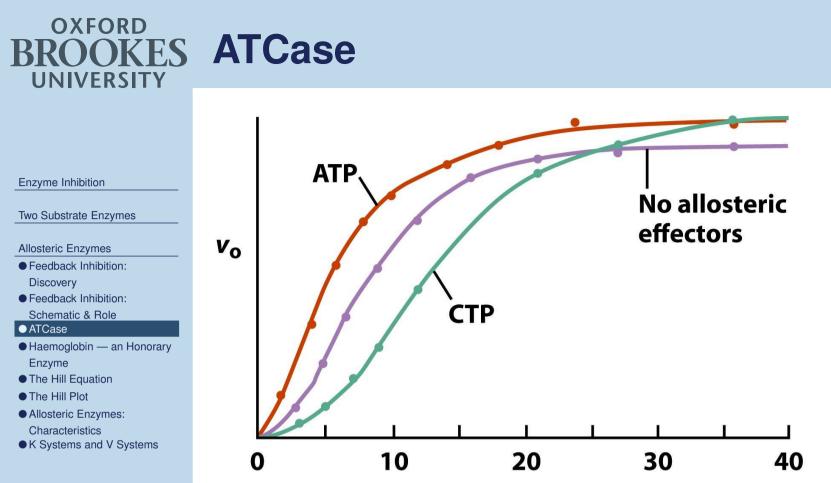
Two Substrate Enzymes

Allosteric Enzymes


• Feedback Inhibition:

Discovery

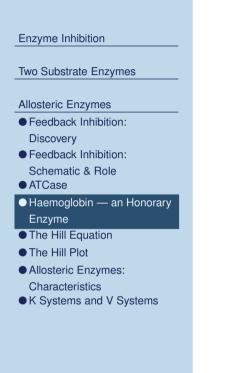
Feedback Inhibition:
 Schematic & Role

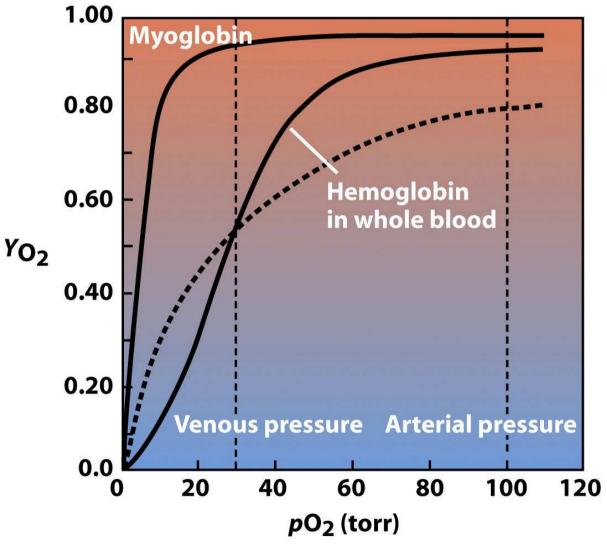

ATCase

- Haemoglobin an Honorary Enzyme
- The Hill Equation
- The Hill Plot
- Allosteric Enzymes:
- Characteristics
- K Systems and V Systems

This is a generalized feedback inhibition loop, with the enzymes represented by numbered boxes. Metabolite S_3 inhibits enzyme 1.

The role of feedback inhibition in metabolism has been widely misunderstood right from the first. We'll be looking at how it really works later in the course.




[Aspartate] (mM)

© 2008 John Wiley & Sons, Inc. All rights reserved.

The kinetics of the allosteric enzyme aspartate transcarbamylase (ATCase). The rate of ATCase is shown with respect to one of its substrates, aspartate (centre curve/purple). The enzyme is inhibited in a feedback manner by the pathway end–product CTP (lower/turquoise). ATP acts as an activator (upper/red).

BROOKES Haemoglobin — an Honorary Enzyme

© 2008 John Wiley & Sons, Inc. All rights reserved.

BROOKES The Hill Equation

Fractional saturation, \bar{Y} :

Enzyme Inhibition

Two Substrate Enzymes

Allosteric Enzymes

- Feedback Inhibition: Discovery
- Feedback Inhibition:
 Schematic & Bole
- ATCase
- Haemoglobin an Honorary Enzyme

The Hill Equation

- The Hill Plot
- Allosteric Enzymes:

Characteristics

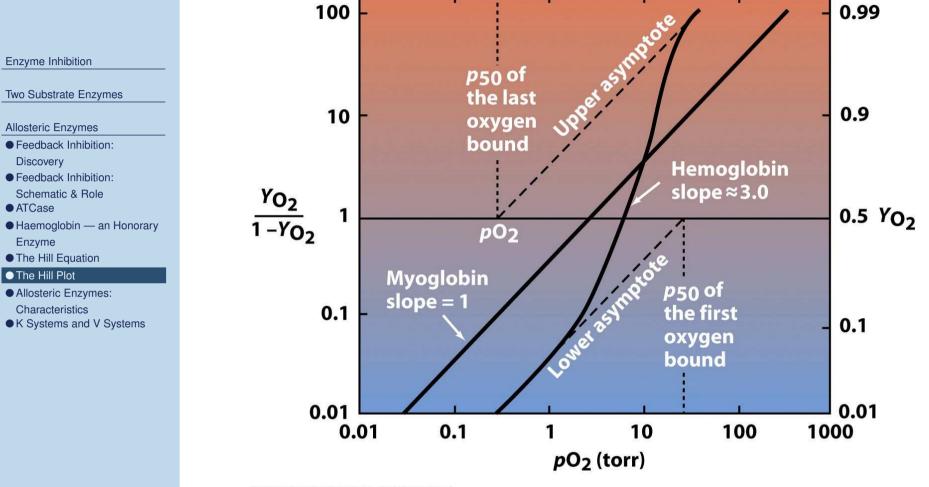
K Systems and V Systems

 $\bar{Y} = rac{\text{No. of } O_2 \text{ sites occupied}}{\text{Total no. of } O_2 \text{ sites on Hb}}$

The Hill equation for the reaction:

 $\mathsf{Hb} + \mathsf{nO}_2 \stackrel{K}{\rightleftharpoons} \mathsf{Hb}(\mathsf{O}_2)_n$

is:


$$\bar{Y} = \frac{[O_2]^{n_H}}{K^n + [O_2]^{n_H}}$$

which has the linear form:

$$\log\left\{\frac{\bar{Y}}{1-\bar{Y}}\right\} = n_H \log[O_2] - n_H \log K$$

Positive cooperativity: $n_H > 1$; non-cooperative (Michaelis-Menten): $n_H = 1$; negative cooperativity: $n_H < 1$. K is also expressed as p_{50} .

BROOKES The Hill Plot

© 2008 John Wiley & Sons, Inc. All rights reserved.

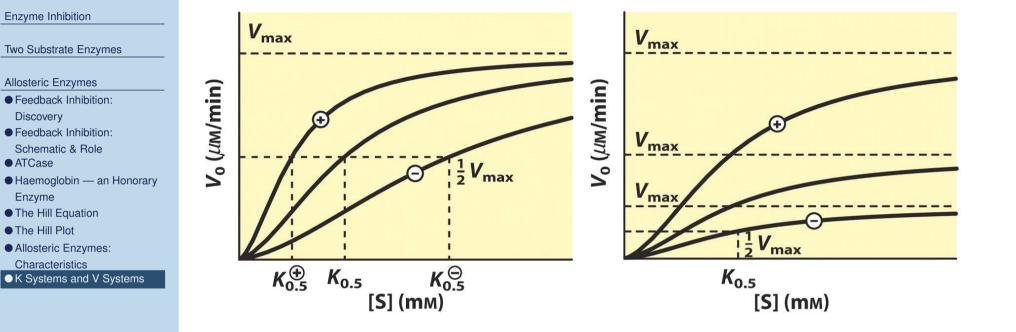
$$\log\left\{\frac{\bar{Y}}{1-\bar{Y}}\right\} = 0$$
 and $[O_2] = K = p_{50}$ when $\bar{Y} = 0.5$.

ROOKES Allosteric Enzymes: Characteristics

Enzyme Inhibition

Two Substrate Enzymes

Allosteric Enzymes


- Feedback Inhibition: Discovery
- Feedback Inhibition:
 Schematic & Role
- ATCase
- Haemoglobin an Honorary Enzyme
- The Hill Equation
- The Hill Plot
- Allosteric Enzymes:
- Characteristics
- K Systems and V Systems

Monod, Wyman & Changeux (1963) defined allosteric enzymes as a class, and devised the name:

- The enzymes are composed of a number of subunits, i.e. they are *multimeric*.
- The feedback inhibitor binds at a site distinct from the active site of the enzyme, named an *allosteric site*, hence *allosteric enzymes*. In some cases, active site and inhibitor site are on different subunits.
- In some cases, there are activators as well as inhibitors of the enzymes: i.e. effectors

Sigmoid rate curves are common.
 See my book for more details of equations. For many modelling purposes, a version of the Hill equation will suffice.

BROOKES K Systems and V Systems

