
Salmonella typhimurium

- Gram negative enteric bacterium.
- Pathogen of Humans and other mammals.
- Closely related to other, more pathogenic Salmonella serotypes.
- Commonly used as a representative *Salmonella* model.

▲ 同 ▶ ▲ 臣 ▶

Salmonella typhimurium

- Gram negative enteric bacterium.
- Pathogen of Humans and other mammals.
- Closely related to other, more pathogenic Salmonella serotypes.
- Commonly used as a representative *Salmonella* model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Can we identify reactions whose inhibition will inhibit growth?

Genome-scale model of Salmonella metabolism

- Model constructed as an assembly of modules:
 - 816 Reactions extracted from BioCyc
 - 61 Transport reactions
 - 35 Additional reactions
- Final model consisting of 912 reactions and 783 metabolites

通 とくき とくきとう

Method - FBA application to Salmonella metabolism

minimise :
$$|\mathbf{V}|$$

subject to
$$\begin{cases} \mathbf{N}\mathbf{V} = \mathbf{0} \\ v_j = t_j \\ v_{\text{ATPase}} = J_{\text{ATPase}} \end{cases}$$

 $\longleftarrow objective - min. \ sum \ of \ fluxes$

通 とくき とくきとう

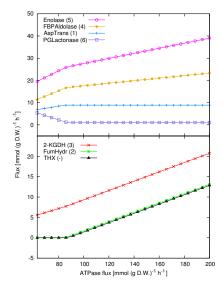
- \leftarrow output transporters fixed
- \leftarrow ATP hydrolysis variable

Method - FBA application to Salmonella metabolism

minimise :
$$|\mathbf{V}|$$
 \leftarrow objective – min. sum of fluxes
subject to
$$\begin{cases} \mathbf{N}\mathbf{V} = \mathbf{0} & \leftarrow \text{steady state constraint} \\ V_j = t_j & \leftarrow \text{output transporters fixed} \\ V_{\text{ATPase}} = J_{\text{ATPase}} & \leftarrow \text{ATP hydrolysis variable} \end{cases}$$

- Aerobic minimal media: Glucose, ammonia, sulphate, oxygen
- Fixed production rate of biomass precursors: Amino acids, DNA, RNA, cell envelope component
- Repeatedly solve with increasing ATP demand.

通 とう ほ とう ほ とう


Results - general properties of flux solution

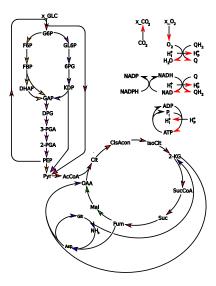
 304 reactions, out of 912, required for biomass precursor synthesis

33 reactions responsive to ATP demand variation

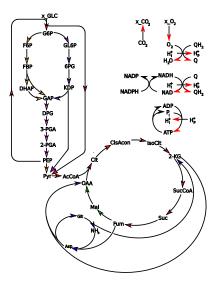
(雪) (ヨ) (ヨ)

Response to varying demand for ATP

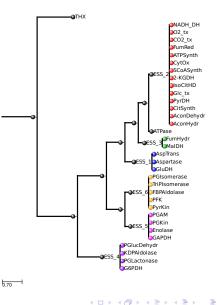
Mark Poolman Modelling Stress Resonse in S. typhimurium

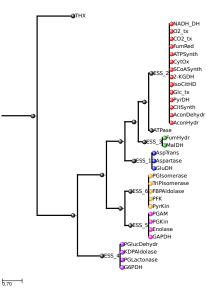

ヘロト ヘワト ヘビト ヘビト

э

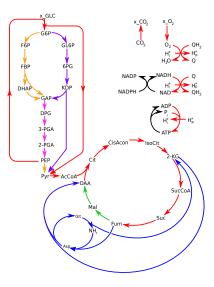

 The reactions whose flux increases in response to increasing ATP demand form a single connected network:

通 とう ほう う ほうし

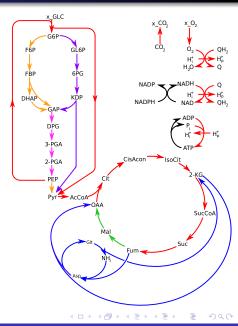

 The reactions whose flux increases in response to increasing ATP demand form a single connected network:


- The reactions whose flux increases in response to increasing ATP demand form a single connected network:
- Reaction fluxes show different responses but these are correlated

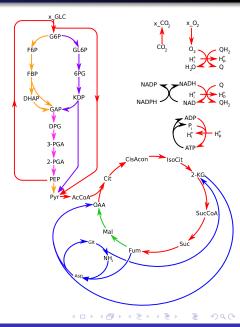
- The reactions whose flux increases in response to increasing ATP demand form a single connected network:
- Reaction fluxes show different responses but these are correlated

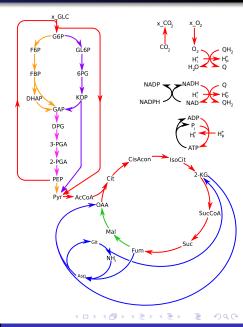


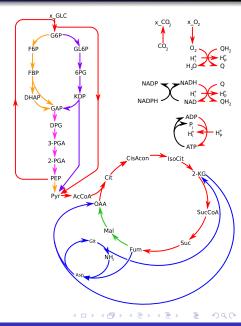
- The reactions whose flux increases in response to increasing ATP demand form a single connected network:
- Reaction fluxes show different responses but these are correlated
- This identifies 6 sets of reactions with similar responses

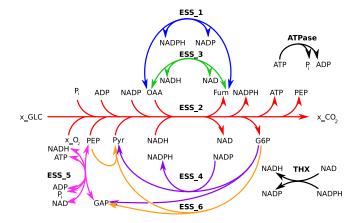


イロト イ理ト イヨト イヨト


- The reactions whose flux increases in response to increasing ATP demand form a single connected network:
- Reaction fluxes show different responses but these are correlated
- This identifies 6 sets of reactions with similar responses


 In the isolated catabolic core the correlated reactions form 6 subsets.


- In the isolated catabolic core the correlated reactions form 6 subsets.
- There are 5 elementary modes producing ATP.


- In the isolated catabolic core the correlated reactions form 6 subsets.
- There are 5 elementary modes producing ATP.
- Note the involvement of nitrogen metabolism.

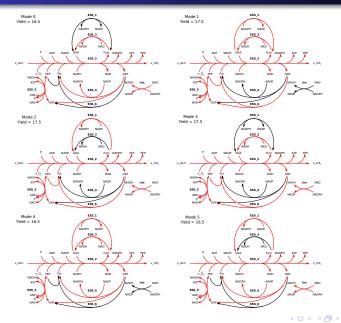
- In the isolated catabolic core the correlated reactions form 6 subsets.
- There are 5 elementary modes producing ATP.
- Note the involvement of nitrogen metabolism.
- It is now easy catabolic core.

Results - catabolic core - as enzyme subsets

Mark Poolman Modelling Stress Resonse in S. typhimurium

(E) < (E)</p>

< 17 ▶


3

The six reaction subsets can be combined to generate a total of five elementary modes:

EM 1	1	2	3		5	
EM 2	1	2		4	5	
EM 1 EM 2 EM 3 EM 4 EM 5	1	2			5	6
EM 4		2	3	4	5	
EM 5		2	3		5	6

通 とく ヨ とく ヨ とう

Results - catabolic core

Mark Poolman Modelling Stress Resonse in S. typhimurium

< 注 → < 注 → </td>

æ

F rom this we can identify:

Reactions whose removal, singly or in combination, abolish the production of ATP in the catabolic core.

Identify the impact this has on the whole model.

From 2 identify candidates for KO experiments.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Hartman *et al.* (2013), *Microbiolgy*, Identification of potential drug targets in *Salmonella* Typhimurium using metabolic modelling and experimental validation., **vol**, pp pages.

く 同 と く ヨ と く ヨ と

æ

Hassan Hartman Martin Woodward John Olsen Anu Raghuthanan Oxford Brookes University Reading University University of Copenhagen National Chemical Laboratory, Pune

Hartman *et al.* (2014), *Microbiolgy*, Identification of potential drug targets in *Salmonella* Typhimurium using metabolic modelling and experimental validation., **160**, pp 1252–1256.

・ 同 ト ・ ヨ ト ・ ヨ ト