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A metabolic system is defined by 
internal reactions and exchange fluxes

The temporal change of the concentrations is given by dX
dt

=N⋅v

N⋅v=0Steady state is characterised by

Stoichiometric modelling

N



  

N⋅v=0
Problem: This equation has many solutions!

Which one is correct?

N⋅v=0
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●  We know what goes in
●  We know what goes out
●  We do not know what is happening inside!

Constraints allow to reduce the number of possible solutions

Optimisation allows to find special fluxes (and answer 'what if...?')



  

Linear Programming

Linear Programming (LP) is an optimisation technique

Identify variable values which result in a maximal (or minimal) value of a 

function which linearly depends on the parameters under given constraints



  

Introduction

General idea: optimise a linear function under inequality constraints

Ω=∑
i

N

ci⋅x i

Variables: xi , i=1...N

Objective:

Constraints: l i≤x i≤ui



  

Introduction

General idea: optimise a linear function under inequality constraints

Ω=∑
i

N

ci⋅x i

Variables: xi , i=1...N

Objective:

EXAMPLES

Constraints: l i≤x i≤ui



  

Example 1: Maximising profit

A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 
acres. However, he has only $1200 to spend and each acre of wheat costs 
$200 to plant and each acre of rye costs $100 to plant. Moreover, the farmer 
has to get the planting done in 12 hours and it takes an hour to plant an acre of 
wheat and 2 hours to plant an acre of rye. If the profit is $500 per acre of 
wheat and $300 per acre of rye how many acres of each should be planted to 
maximize profits?



  

A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 
acres. However, he has only $1200 to spend and each acre of wheat costs 
$200 to plant and each acre of rye costs $100 to plant. Moreover, the farmer 
has to get the planting done in 12 hours and it takes an hour to plant an acre of 
wheat and 2 hours to plant an acre of rye. If the profit is $500 per acre of 
wheat and $300 per acre of rye how many acres of each should be planted to 
maximize profits?

0. Read the whole problem.
1. Define your unknowns.
2. Express the objective function and the constraints.
3. Graph the constraints.
4. Find the corner points to the region of feasible solutions.
5. Evaluate the objective function at all the feasible corner points. 

Steps to solve the problem:

see http://www.sonoma.edu/users/w/wilsonst/courses/math_131/lp/

Example 1: Maximising profit
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Example 1: Maximising profit

Total land: x+ y⩽10

Minimum planting: x+ y⩾7

Limited funds:

Limited time:

feasible solutions

Which one of the feasible solutions gives the most profit?

Profit: Ω=500x+300y

200 x+100 y⩽1200

x+2 y⩽12



  

Example 1: Maximising profit

Total land: x+ y⩽10

Minimum planting: x+ y⩾7

Limited funds:

Limited time:

iso-profit lines

200 x+100 y⩽1200

x+2 y⩽12

Which one of the feasible solutions gives the most profit?

Profit: Ω=500x+300y



  

Example 1: Maximising profit

Total land: x+ y⩽10

Minimum planting: x+ y⩾7

Limited funds:

Limited time:

iso-profit lines

Maximal profit at: x=4, y=4

optimal solution

200 x+100 y⩽1200

x+2 y⩽12



  

Example 1: Maximising profit

Total land: x+ y⩽10

Minimum planting: x+ y⩾7

Limited funds: 200 x+100 y⩽1200

Limited time: x+2 y⩽12

iso-profit lines

Maximal profit at: x=4, y=4

optimal solution

In general: ● space of feasible solution is a convex polyhedron
● optimal solution is always at a vertex



  

Example: Optimising happyness

A week has 168 hours

● We need time to study (S), party (P) and for everything else (E – incl. sleep, eat)
● To survive, we need at least 8h rest per day: E ≥ 56
● To maintain sanity, we need to party or rest a bit more: P+E ≥ 70
● To pass exams, we need to study at least 60h/week: S ≥ 60
● But longer if we don't sleep enough or party too much: 2S+E-3P ≥ 150

(this means, for every missed hour of sleep, we need to study 30 min longer and 

for every hour partying, we need to study 1.5h longer because of hangovers)

Objective: Maximise happyness, expressed by Ω = 2P+E

(extra rest makes happy, partying makes twice as happy)



  

Example: Optimising happyness

The problem:

Ω=2 P+Emaximise

under the constraints that
S+P+E=168
E⩾56
S⩾60
2S+E−3P⩾150
P+E⩾70
P⩾0

(week)
(survival)
(min. study)
(hangovers)
(sanity)
(no negative times)



  

Example: Optimising happyness

The problem:

Ω=2 P+Emaximise

under the constraints that
S+P+E=168
E⩾56
S⩾60
2S+E−3P⩾150
P+E⩾70
P⩾0

(week)
(survival)
(min. study)
(hangovers)
(sanity)
(no negative times)

Eliminate S

S=168−P−E
E⩾56

168−P−E⩾60⇔P+E⩽108
2(168−P−E )+E−3P⩾150⇔E+5P⩽186

P+E⩾70
P⩾0



  

Example: Optimising happyness

Survival: E⩾56
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Example: Optimising happyness

Survival: E⩾56

minimal study: P+E⩽108

hangovers: E+5P⩽186

sanity: P+E⩾70

iso-happyness lines

optimal solution

Calculate optimal solution by finding intersection of two lines:

186−5P=108−P ⇔ P=19.5
E=108−P ⇒ E=88.5

S=168−P−E ⇒ S=60



  

Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES v i , i=1... R

?

?
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internal reactions and exchange fluxes

The temporal change of the concentrations is given by dX
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A metabolic system is defined by 
internal reactions and exchange fluxes

The temporal change of the concentrations is given by dX
dt

=N⋅v

N⋅v=0Steady state is characterised by

Application to metabolic networks

N

Constraint #1



  

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in
one direction
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one direction

E.g. Glc+ATP→G6P+ADP ΔG0 = −24.9 kJ/mole

K eq =
[ADP]eq⋅[G6P]eq

[ATP]eq⋅[Glc]eq
= e−ΔG0/RT = e10.05 = 23000
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E.g. Glc+ATP→G6P+ADP ΔG0 = −24.9 kJ/mole

K eq =
[ADP]eq⋅[G6P]eq

[ATP]eq⋅[Glc]eq
= e−ΔG0/RT = e10.05 = 23000

With [ATP]/[ADP]=3 and [Glc]=1 mM the reaction runs in reverse if

[G6P] > K eq⋅[Glc]⋅[ATP]
[ADP]

= 69000 mM = 69M !!!

(pure water has 55.5 M)



  

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in
one direction

E.g. Glc+ATP→G6P+ADP ΔG0 = −24.9 kJ/mole

Constraints #2directionality implies v j≥0

K eq =
[ADP]eq⋅[G6P]eq

[ATP]eq⋅[Glc]eq
= e−ΔG0/RT = e10.05 = 23000

With [ATP]/[ADP]=3 and [Glc]=1 mM the reaction runs in reverse if

[G6P] > K eq⋅[Glc]⋅[ATP]
[ADP]

= 69000 mM = 69M !!!

(pure water has 55.5 M)



  

Other constraints

Some process have upper bounds

Constraints #3limitation implies v j≤v j
max

● maximal uptake rates
● known maximal enzyme activities



  

What is constraint based modelling?

Fluxes in metabolic networks are subject to constraints

●  Thermodynamic (directionality)

●  Enzyme concentrations

Constraint based models analyse steady state solutions which
fulfill the given constraints.

Find a solution vector                                   such thatv=v1 , ... ,vr 
T

N⋅v=0 and aiv ibi

v i≥0

v i≤v i ,max

flux cone



  

Example: constraint based model

constraints

v3=0 (thermodynamic)

0≤b1≤1 ⇒ 0≤v1v2≤1
0≤b2≤2 ⇒ 0≤v1v4≤2
0≤b3 ⇒ 0≤v2−v4

Solution space

In general, the solution
is a convex cone:

flux cone

(Kauffman et. al, 2003)



  

Which solution?



  

Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES v i , i=1... R

Stationarity, maximal rates

?

N⋅v=0, 0≤v i≤v i
max



  

Application to metabolic networks

Variables:

Objective:

Constraints:

FLUXES v i , i=1... R

Stationarity, maximal rates

?

N⋅v=0, 0≤v i≤v i
max

The whole purpose of linear programming is to 
find one flux distribution from the solution cone 
which is “optimal” 



  

What is optimal?

No general answer!

Plausible assumptions:

● maximal growth / biomass production
● most 'economic' solution (minimal enzyme usage)

Even if the objective is not 'correct', the computation is useful:

We can investigate the question “what if...?”



  

A typical LP problem maximising biomass

● assemble r x n stoichiometry matrix N (r reactions, n metabolites)

● identify irreversible reactions

● define boundary fluxes

● define “biomass reaction” vbiomass : ∑
i

αi⋅S i→biomass

(54.613) cpd00001 + (59.98) cpd00002 + (0.001787) cpd00003 + (0.000045) cpd00004 + (0.000335) cpd00005 + (0.000112) cpd00006 + (0.000168) cpd00010 + (0.01128) cpd00013 + (0.000223) 
cpd00015 + (0.000223) cpd00016 + (0.000223) cpd00017 + (0.000279) cpd00022 + (0.2557) cpd00023 + (0.000223) cpd00028 + (0.003008) cpd00030 + (0.5953) cpd00033 + (0.003008) cpd00034 
+ (0.4991) cpd00035 + (0.2091) cpd00038 + (0.3334) cpd00039 + (0.2342) cpd00041 + (0.000223) cpd00042 + (0.00376) cpd00048 + (0.2874) cpd00051 + (0.1298) cpd00052 + (0.2557) cpd00053 
+ (0.2097) cpd00054 + (0.000223) cpd00056 + (0.003008) cpd00058 + (0.1493) cpd00060 + (0.1401) cpd00062 + (0.004512) cpd00063 + (0.05523) cpd00065 + (0.18) cpd00066 + (0.134) 
cpd00069 + (0.000031) cpd00070 + (0.000098) cpd00078 + (0.08899) cpd00084 + (0.000223) cpd00087 + (0.004512) cpd00099 + (0.4378) cpd00107 + (0.02481) cpd00115 + (0.03327) cpd00118 
+ (0.0921) cpd00119 + (0.000223) cpd00125 + (0.2148) cpd00129 + (0.2342) cpd00132 + (0.003008) cpd00149 + (0.1542) cpd00155 + (0.4119) cpd00156 + (0.2465) cpd00161 + (0.000223) 
cpd00166 + (0.000223) cpd00201 + (0.1692) cpd00205 + (0.000223) cpd00216 + (0.000223) cpd00220 + (0.02561) cpd00241 + (0.007519) cpd00254 + (0.006744) cpd00264 + (0.2823) cpd00322 
+ (0.000223) cpd00345 + (0.02561) cpd00356 + (0.02481) cpd00357 + (0.000223) cpd00557 + (0.000055) cpd02229 + (0.000223) cpd03453 + (0.006767) cpd10515 + (0.006767) cpd10516 + 
(0.000223) cpd11313 + (0.003008) cpd11574 + (0.000223) cpd15353 + (0.002944) cpd15428[p] + (0.00229) cpd15429[p] + (0.00118) cpd15431[p] + (0.008151) cpd15432[e] + (0.000223) cpd15499 
+ (0.001345) cpd15501[p] + (0.000605) cpd15503[p] + (0.005381) cpd15505[p] + (0.005448) cpd15506[p] + (0.000673) cpd15508[p] + (0.0318) cpd15531[p] + (0.02473) cpd15532[p] + (0.01275) 
cpd15534[p] + (0.004897) cpd15538[p] + (0.003809) cpd15539[p] + (0.001963) cpd15541[p] + (0.000223) cpd15561 => (59.81) cpd00008 + (58.8062) cpd00009 + (0.7498) cpd00012 + (59.81) 
cpd00067 + cpd11416

Example from E.coli model (Feist et al, 2007)

● define upper bounds for uptake rates (boundary fluxes):

R⊂{1. .. r }

B⊂{1... r }

vi≤v i
max for i∈B

The LP-problem: vbiomass

N⋅v=0
maximise

under the constraints
v i≤v i

max for i∈B
v j≥0 for i∈R

Result:
Flux distribution v



  

Optimality studies in E. coli

●  E. coli was grown on succinate 
●  Optimal growth rates were predicted as extreme fluxes
●  Oxygen and succinate uptake rates were measured

(Edwards and Palsson, 2000)



  

A typical LP problem minimising costs

● assemble r x n stoichiometry matrix N (r reactions, n metabolites)

● identify irreversible reactions

● define boundary fluxes

● define “biomass reaction”

● Fix biomass (e.g. from experiments)

vbiomass : ∑
i

αi⋅S i→biomass

R⊂{1. .. r }

B⊂{1... r }

The LP-problem: ∑
i

r

wi⋅v i

N⋅v=0

minimise

under the constraints

v j≥0 for i∈R

vbiomass=vbiomass
exp

vbiomass=vbiomass
exp



  

Variation of constraints to query the model
Objective: study how optimal fluxes change upon perturbation of external conditions

Example: impose additional ATP demand (reflecting e.g. external stress conditions)

Additional constraint vATPdemand=γ

(Additional ATP consuming process: ATP+H2 O→ADP+Pi )

tunable parameter



  

Variation of constraints to query the model
Objective: study how optimal fluxes change upon perturbation of external conditions

Example: impose additional ATP demand (reflecting e.g. external stress conditions)

Additional constraint vATPdemand=γ

(Additional ATP consuming process: ATP+H2 O→ADP+Pi )

tunable parameter

(Poolman et al, 2009)



  

Simulating availability of nitrogen sources

The LP-problem: γ⋅vNO3_uptake+∑
i

r

vi

N⋅v=0

minimise

under the constraints

v j≥0 for i∈R
v biomass=vbiomass

exp



  

Simulating availability of nitrogen sources

increasing cost for ammonia uptake

Results for a network of Medicago truncatula



  

“What if” questions
Assume, we want to know what is the 'cheapest' metabolic route to 
produce a certain compound X

Define 'cheap'

● minimal energy requirement (ATP)
● minimal redox requirement (NADPH)

The LP-problem: w1vATPproduction+w2 vNADPHproduction

N⋅v=0

minimise

under the constraints

v j≥0 for i∈R

v X=1

Add consuming reaction v X : X→∅



  

nitrogen source: NH4 NO3

demand:

ATP

NADPH

Results for a network of Medicago truncatula


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

