Linear programming applied to genome-scale metabolic network models

Oliver Ebenhöh

INNOTARGETS Modelling Workshop, May 30-June 2, 2023

Stoichiometric modelling

A metabolic system is defined by internal reactions and exchange fluxes

The temporal change of the concentrations is given by

$$
\frac{d X}{d t}=N \cdot v
$$

Steady state is characterised by
$N \cdot v=0$

$N \cdot v=0$

Problem: This equation has many solutions!
Which one is correct?

- We know what goes in
- We know what goes out
- We do not know what is happening inside!

Constraints allow to reduce the number of possible solutions
Optimisation allows to find special fluxes (and answer 'what if...?')

Linear Programming

Linear Programming (LP) is an optimisation technique

Identify variable values which result in a maximal (or minimal) value of a function which linearly depends on the parameters under given constraints

Introduction

General idea: optimise a linear function under inequality constraints
Variables: $\quad x_{i}, \quad i=1 \ldots N$

Constraints: $\quad l_{i} \leq x_{i} \leq u_{i}$
Objective: $\quad \Omega=\sum_{i}^{N} c_{i} \cdot x_{i}$

Introduction

General idea: optimise a linear function under inequality constraints
Variables: $\quad x_{i}, \quad i=1 \ldots N$

Constraints: $\quad l_{i} \leq x_{i} \leq u_{i}$
Objective: $\quad \Omega=\sum_{i}^{N} c_{i} \cdot x_{i}$

EXAMPLES

Example 1: Maximising profit

A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 acres. However, he has only $\$ 1200$ to spend and each acre of wheat costs $\$ 200$ to plant and each acre of rye costs $\$ 100$ to plant. Moreover, the farmer has to get the planting done in 12 hours and it takes an hour to plant an acre of wheat and 2 hours to plant an acre of rye. If the profit is $\$ 500$ per acre of wheat and $\$ 300$ per acre of rye how many acres of each should be planted to maximize profits?

Example 1: Maximising profit

A farmer has 10 acres to plant in wheat and rye. He has to plant at least 7 acres. However, he has only $\$ 1200$ to spend and each acre of wheat costs $\$ 200$ to plant and each acre of rye costs $\$ 100$ to plant. Moreover, the farmer has to get the planting done in 12 hours and it takes an hour to plant an acre of wheat and 2 hours to plant an acre of rye. If the profit is $\$ 500$ per acre of wheat and $\$ 300$ per acre of rye how many acres of each should be planted to maximize profits?

Steps to solve the problem:
0 . Read the whole problem.

1. Define your unknowns.
2. Express the objective function and the constraints.
3. Graph the constraints.
4. Find the corner points to the region of feasible solutions.
5. Evaluate the objective function at all the feasible corner points.

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Limited funds:
$200 x+100 y \leqslant 1200$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Which one of the feasible solutions gives the most profit?
Profit: $\quad \Omega=500 \mathrm{x}+300 \mathrm{y}$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$
Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Which one of the feasible solutions gives the most profit?
Profit: $\quad \Omega=500 \mathrm{x}+300 \mathrm{y}$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$
Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Maximal profit at: $x=4, y=4$

Example 1: Maximising profit

Total land: $\quad x+y \leqslant 10$

Minimum planting: $x+y \geqslant 7$

Limited funds: $\quad 200 x+100 y \leqslant 1200$

Limited time: $\quad x+2 y \leqslant 12$

Maximal profit at: $x=4, y=4$
In general:

- space of feasible solution is a convex polyhedron
- optimal solution is always at a vertex

Example: Optimising happyness

A week has 168 hours

- We need time to study (S), party (P) and for everything else (E - incl. sleep, eat)
- To survive, we need at least 8 h rest per day: $E \geq 56$
- To maintain sanity, we need to party or rest a bit more: $P+E \geq 70$
- To pass exams, we need to study at least $60 h /$ week: $S \geq 60$
- But longer if we don't sleep enough or party too much: $2 S+E-3 P \geq 150$ (this means, for every missed hour of sleep, we need to study 30 min longer and for every hour partying, we need to study 1.5 h longer because of hangovers)

Objective: Maximise happyness, expressed by $\Omega=2 P+E$ (extra rest makes happy, partying makes twice as happy)

Example: Optimising happyness

The problem:
maximise $\quad \Omega=2 P+E$
under the constraints that

(week)	$S+P+E=168$
(survival)	$E \geqslant 56$
(min. study)	$S \geqslant 60$
(hangovers)	$2 S+E-3 P \geqslant 150$
(sanity)	$P+E \geqslant 70$
(no negative times)	$P \geqslant 0$

Example: Optimising happyness

The problem:
maximise $\quad \Omega=2 P+E$
under the constraints that

(week)	$S+P+E=168$
(survival)	$E \geqslant 56$
(min. study)	$S \geqslant 60$
(hangovers)	$2 S+E-3 P \geqslant 150$
(sanity)	$P+E \geqslant 70$
(no negative times)	$P \geqslant 0$

Eliminate S

$$
\begin{gathered}
S=168-P-E \\
\\
168-P-E \geqslant 60 \Leftrightarrow P+E \leqslant 108 \\
2(168-P-E)+E-3 P \geqslant 150 \Leftrightarrow E+5 P \leqslant 186 \\
\\
P+E \geqslant 70 \\
P \geqslant 0
\end{gathered}
$$

Example: Optimising happyness

Survival: $\quad E \geqslant 56$

Example: Optimising happyness

Survival:	$E \geqslant 56$
minimal study:	$P+E \leqslant 108$

Example: Optimising happyness

Survival:	$E \geqslant 56$
minimal study:	$P+E \leqslant 108$
hangovers:	$E+5 P \leqslant 186$

Example: Optimising happyness

Survival:	$E \geqslant 56$
minimal study:	$P+E \leqslant 108$
hangovers:	$E+5 P \leqslant 186$
sanity:	$P+E \geqslant 70$

Example: Optimising happyness

Survival:	$E \geqslant 56$
minimal study:	$P+E \leqslant 108$
hangovers:	$E+5 P \leqslant 186$
sanity:	$P+E \geqslant 70$

Example: Optimising happyness

Survival:	$E \geqslant 56$
minimal study:	$P+E \leqslant 108$
hangovers:	$E+5 P \leqslant 186$
sanity:	$P+E \geqslant 70$

Calculate optimal solution by finding intersection of two lines:

$$
\begin{aligned}
186-5 P=108-P & \Leftrightarrow P=19.5 \\
E=108-P & \Rightarrow E=88.5 \\
S=168-P-E & \Rightarrow S=60
\end{aligned}
$$

Application to metabolic networks

Variables: FLUXES $\quad v_{i}, \quad i=1 \ldots R$

Constraints: ?

Objective:
?

Application to metabolic networks

A metabolic system is defined by internal reactions and exchange fluxes

The temporal change of the concentrations is given by

$$
\frac{d X}{d t}=N \cdot v
$$

Steady state is characterised by
$N \cdot v=0$

Application to metabolic networks

A metabolic system is defined by internal reactions and exchange fluxes

The temporal change of the concentrations is given by

$$
\frac{d X}{d t}=N \cdot v
$$

Steady state is characterised by

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in one direction

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in one direction
E.g. Glc $+\mathrm{ATP} \rightarrow \mathrm{G} 6 \mathrm{P}+\mathrm{ADP} \quad \Delta G^{0}=-24.9 \mathrm{~kJ} / \mathrm{mole}$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{ADP}]_{\mathrm{eq}} \cdot[\mathrm{G} 6 \mathrm{P}]_{\mathrm{eq}}}{[\mathrm{ATP}]_{\mathrm{eq}} \cdot[\mathrm{Glc}]_{\mathrm{eq}}}=e^{-\Delta G^{0} / R T}=e^{10.05}=23000
$$

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in one direction
E.g. Glc $+\mathrm{ATP} \rightarrow \mathrm{G} 6 \mathrm{P}+\mathrm{ADP} \quad \Delta G^{0}=-24.9 \mathrm{~kJ} / \mathrm{mole}$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{ADP}]_{\mathrm{eq}} \cdot[\mathrm{G} 6 \mathrm{P}]_{\mathrm{eq}}}{[\mathrm{ATP}]_{\mathrm{eq}} \cdot[\mathrm{Glc}]_{\mathrm{eq}}}=e^{-\Delta G^{0} / R T}=e^{10.05}=23000
$$

With [ATP]/[ADP]=3 and [Glc]=1 mM the reaction runs in reverse if

$$
[\mathrm{G} 6 \mathrm{P}]>K_{\mathrm{eq}} \cdot[\mathrm{Glc}] \cdot \frac{[\mathrm{ATP}]}{[\mathrm{ADP}]}=69000 \mathrm{mM}=69 \mathrm{M}!!!
$$

(pure water has 55.5 M)

Other constraints

Because of thermodynamic reasons, some reactions can only proceed in one direction
E.g. Glc + ATP \rightarrow G6P + ADP $\quad \Delta G^{0}=-24.9 \mathrm{~kJ} / \mathrm{mole}$

$$
K_{\mathrm{eq}}=\frac{[\mathrm{ADP}]_{\mathrm{eq}} \cdot[\mathrm{G} 6 \mathrm{P}]_{\mathrm{eq}}}{[\mathrm{ATP}]_{\mathrm{eq}} \cdot[\mathrm{Glc}]_{\mathrm{eq}}}=e^{-\Delta G^{0} / R T}=e^{10.05}=23000
$$

With $[A T P] /[A D P]=3$ and [Glc] $=1 \mathrm{mM}$ the reaction runs in reverse if

$$
[\mathrm{G} 6 \mathrm{P}]>K_{\mathrm{eq}} \cdot[\mathrm{Glc}] \cdot \frac{[\mathrm{ATP}]}{[\mathrm{ADP}]}=69000 \mathrm{mM}=69 \mathrm{M}!!!
$$

(pure water has 55.5 M)

directionality implies $v_{j} \geq 0$ Constraints \#2

Other constraints

Some process have upper bounds

- maximal uptake rates
- known maximal enzyme activities
limitation implies
$v_{j} \leq v_{j}^{\max }$
Constraints \#3

What is constraint based modelling?

Fluxes in metabolic networks are subject to constraints

- Thermodynamic (directionality)
- Enzyme concentrations

$$
v_{i} \geq 0
$$

$$
v_{i} \leq v_{i, \max }
$$

Constraint based models analyse steady state solutions which fulfill the given constraints.

Find a solution vector

$$
v=\left(v_{1}, \ldots, v_{r}\right)^{\top} \text { such that }
$$

$$
N \cdot v=0 \quad \text { and } \quad a_{i} \leqslant v_{i} \leqslant b_{i}
$$

Example: constraint based model

(Kauffman et. al, 2003)
In general, the solution is a convex cone:
flux cone

constraints
$v_{3}=0 \quad$ (thermodynamic)
$0 \leq b_{1} \leq 1 \Rightarrow 0 \leq v_{1}+v_{2} \leq 1$
$0 \leq b_{2} \leq 2 \Rightarrow 0 \leq v_{1}+v_{4} \leq 2$
$0 \leq b_{3} \Rightarrow 0 \leq v_{2}-v_{4}$
Solution space

Which solution?

Application to metabolic networks

Variables: FLUXES $\quad v_{i}, \quad i=1 \ldots R$

Constraints: Stationarity, maximal rates $N \cdot v=0,0 \leq v_{i} \leq v_{i}^{\max }$

Objective: ?

Application to metabolic networks

Variables: FLUXES $\quad v_{i}, \quad i=1 \ldots R$

Constraints: Stationarity, maximal rates $N \cdot v=0,0 \leq v_{i} \leq v_{i}^{\max }$

Objective:
?

The whole purpose of linear programming is to find one flux distribution from the solution cone which is "optimal"

What is optimal?

No general answer!

Plausible assumptions:

- maximal growth / biomass production
- most 'economic' solution (minimal enzyme usage)

Even if the objective is not 'correct', the computation is useful:
We can investigate the question "what if...?"

A typical LP problem maximising biomass

- assemble $r \times n$ stoichiometry matrix N (r reactions, n metabolites)
- identify irreversible reactions $R \subset\{1 \ldots r\}$
- define boundary fluxes $B \subset\{1 \ldots r\}$
- define "biomass reaction" $v_{\text {biomass }}: \sum_{i} \alpha_{i} \cdot S_{i} \rightarrow$ biomass

Example from E.coli model (Feist et al, 2007)

 $+(0.2097) \mathrm{cpd} 00054+(0.000223) \mathrm{cpd} 00056+(0.003008) \mathrm{cpd} 00058+(0.1493) \mathrm{cpd} 00060+(0.1401) \mathrm{cpd} 00062+(0.004512) \mathrm{cpd} 00063+(0.05523) \mathrm{cpd} 00065+(0.18) \mathrm{cpd} 00066+(0.134)$

cpd00067 + cpd11416

- define upper bounds for uptake rates (boundary fluxes): $v_{i} \leq v_{i}^{\max }$ for $i \in B$

The LP-problem:
maximise
$V_{\text {biomass }}$
under the constraints

$$
\begin{aligned}
& N \cdot v=0 \\
& v_{i} \leq v_{i}^{\max } \text { for } i \in B \\
& v_{j} \geq 0 \text { for } i \in R
\end{aligned}
$$

Result:
Flux distribution v

Optimality studies in E. coli

- E. coli was grown on succinate
- Optimal growth rates were predicted as extreme fluxes
- Oxygen and succinate uptake rates were measured

Growth Rate ($1 / \mathrm{hr}$)

(Edwards and Palsson, 2000)

A typical LP problem minimising costs

- assemble $r \times n$ stoichiometry matrix N (r reactions, n metabolites)
- identify irreversible reactions $R \subset\{1 \ldots r\}$
- define boundary fluxes $B \subset\{1 \ldots r\}$
- define "biomass reaction" $v_{\text {biomass }}: \sum_{i} \alpha_{i} \cdot S_{i} \rightarrow$ biomass
- Fix biomass (e.g. from experiments) $v_{\text {biomass }}=v_{\text {biomass }}^{\exp }$

The LP-problem: minimise $\sum_{i}^{r} w_{i} \cdot v_{i}$
under the constraints $N \cdot v=0$

$$
v_{\text {biomass }}=v_{\text {biomass }}^{\exp }
$$

$v_{j} \geq 0$ for $i \in R$

Variation of constraints to query the model

Objective: study how optimal fluxes change upon perturbation of external conditions Example: impose additional ATP demand (reflecting e.g. external stress conditions)

> Additional constraint $\quad v_{\text {ATPdemand }}=\gamma \quad \leftharpoonup \quad$ tunable parameter
> (Additional ATP consuming process: ATP $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ADP}+\mathrm{P}_{\mathrm{i}}$)

Variation of constraints to query the model

Objective: study how optimal fluxes change upon perturbation of external conditions Example: impose additional ATP demand (reflecting e.g. external stress conditions)
\Longrightarrow Additional constraint $v_{\text {ATPdemand }}=\gamma \longleftarrow$ tunable parameter

Simulating availability of nitrogen sources

The LP-problem: minimise $\quad \gamma \cdot v_{\text {NO3_uptake }}+\sum_{i}^{r} v_{i}$
under the constraints $N \cdot v=0$
$v_{\text {biomass }}=v_{\text {biomass }}^{\exp }$
$v_{j} \geq 0$ for $i \in R$

Simulating availability of nitrogen sources

increasing cost for ammonia uptake
Results for a network of Medicago truncatula

"What if" questions

Assume, we want to know what is the 'cheapest' metabolic route to produce a certain compound X

Add consuming reaction $\quad v_{X}: \mathrm{X} \rightarrow \varnothing$

Define 'cheap'

- minimal energy requirement (ATP)
- minimal redox requirement (NADPH)

The LP-problem:
minimise $\quad w_{1} v_{\text {ATPproduccion }}+w_{2} v_{\text {NADPHproduction }}$
under the constraints $N \cdot v=0$
$v_{X}=1$
$v_{j} \geq 0$ for $i \in R$

Energy Requirement of Metabolites in Terms of Reductant and ATP

Results for a network of Medicago truncatula

