Innotargets Modelling Workshop June 2023

Mark Poolman

May 25, 2023

Mark Poolman Innotargets Modelling Workshop June 2023

通 とくほ とくほ とう

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

The Problem

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

The Problem

How to connect input(s) to output(s) ??

Mark Poolman Innotargets Modelling Workshop June 2023

코 에 제 코 어

How to connect input(s) to output(s) ??

What do we want to know - can we:

• Predict network behaviour (assign fluxes to reactions)?

• Predict the effect of network modification?

Predict the modification needed to achieve a specific effect?

通 とくほ とくほ とう

æ

The Problem

- Which reactions are essential?
- What does knowledge of flux in one reaction tell us about flux in another?
- What does knowledge of one metabolite concentration tell us about the concentration of another?
- What are the routes from Starch to PGA2, ...,

The Problem

- Which reactions are essential?
- What does knowledge of flux in one reaction tell us about flux in another?
- What does knowledge of one metabolite concentration tell us about the concentration of another?
- What are the routes from Starch to PGA?

Definition of a metabolic model

- A set of *External* metabolites inputs and outputs.
- A set of Internal metabolites no net production or consumption.
- A set of reactions that inter-convert them defined by:
 - Stoichiometry.
 - Directionality.
 - Reversibility.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

- Reactions interconvert substrates and products whilst conserving mass.
- Transporters are a special case of reaction (interconvert internal with external metabolites)
- Rate of change concentration is sum of reaction rates.
- This is assumed to tend to zero in the long term (steady state)

Reactions are not enzymes.

• Enzymes are not genes.

ヘロア 人間 アメヨア 人口 ア

Mark Poolman Innotargets Modelling Workshop June 2023

・ 同 ト ・ ヨ ト ・ ヨ ト

results in:

$$\frac{\mathrm{d}A}{\mathrm{d}t} = -r_1$$

Mark Poolman Innotargets Modelling Workshop June 2023

・ 同 ト ・ ヨ ト ・ ヨ ト

results in:

$$\frac{\mathrm{d}A}{\mathrm{d}t} = -r_1$$
$$\frac{\mathrm{d}B}{\mathrm{d}t} = r_1 - r_2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

results in:

$$\frac{\mathrm{d}A}{\mathrm{d}t} = -r_1$$
$$\frac{\mathrm{d}B}{\mathrm{d}t} = r_1 - r_2$$
$$\frac{\mathrm{d}C}{\mathrm{d}t} = r_2$$
$$\frac{\mathrm{d}D}{\mathrm{d}t} = r_2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{dA}{dt} = -r_1$$
$$\frac{dB}{dt} = r_1 - r_2$$
$$\frac{dC}{dt} = r_2$$
$$\frac{dD}{dt} = r_2$$

프 🕨 🗉 프

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Mark Poolman Innotargets Modelling Workshop June 2023

ヘロト 人間 ト ヘヨト ヘヨト

The steady-state assumption:

$$\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} -1 & 0\\1 & -1\\0 & 1\\0 & 1 \end{pmatrix} \begin{pmatrix} r_1\\r_2 \end{pmatrix}$$

.≣⇒

三) -

A ▶

The steady-state assumption:

$$\binom{r_1}{r_2} = \binom{1}{1}$$

Mark Poolman Innotargets Modelling Workshop June 2023

.≣⇒

三) -

A ▶

$$\begin{array}{rcl} \frac{dA}{dt} &=& R_1 + R_3 - R_2\\ \frac{dB}{dt} &=& R_2 - R_3 - R_4 - R_5\\ \frac{dC}{dt} &=& R_4 \end{array}$$

Mark Poolman Innotargets Modelling Workshop June 2023

프 에 에 프 어

$$\begin{array}{rcl} \frac{dA}{dt} &=& R_1 + R_3 - R_2\\ \frac{dB}{dt} &=& R_2 - R_3 - R_4 - R_5\\ \frac{dC}{dt} &=& R_4 \end{array}$$

Mark Poolman Innotargets Modelling Workshop June 2023

ヨンドヨン

Or more succinctly:

$$Nv = 0$$

Or more succinctly:

$$Nv = 0$$

通 とくほ とくほ とう

Or more succinctly:

$$Nv = 0$$

通 とくほ とくほ とう

Or more succinctly:

(* E) * E)

ヘロト 人間 とくほとくほとう

ヘロト 人間 とくほとくほとう

 The null-space captures steady-state invariants of a network that are independent of environment, metabolite levels etc.

- A dead reaction will *always* be dead regardless of kinetic parameters.
- Reactions in subsets carry steady-state flux in fixed ratio regardless of kinetic parameters.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Kernels are not unique

Kernels are not unique

Mark Poolman Innotargets Modelling Workshop June 2023

Kernels are not unique

Mark Poolman Innotargets Modelling Workshop June 2023

We have an understanding of how metabolic behaviour can be mathematically described.

・ 同 ト ・ ヨ ト ・ ヨ ト …